{"title":"二氧化钛纳米粒子通过调节光合作用和抗氧化特性提高黄萱草对镉的耐受性。","authors":"Wei Liu, Yuwei Feng, Shuo Chen, Rui Chu, Siyue Li, Yue Wang, Yongqing Yan","doi":"10.1007/s00299-025-03502-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>TiO<sub>2</sub> nanoparticles mitigates the toxicity of Cd to Hemerocallis citrina Baroni (daylily) by modulating the photosynthetic and antioxidative system, as revealed by physiological and transcriptomic analysis. Cadmium (Cd) is a common heavy metal pollutant exerting toxicity to plants. The unique physiochemical properties of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) suggest their potential applications in agriculture. The molecular and physiological responses of Hemerocallis citrina Baroni (daylily) to Cd stress and the ameliorative effect of TiO<sub>2</sub> NPs were investigated. KEGG enrichment analysis on differentially expressed genes (DEGs) revealed pronounced enrichment of pathways related to photosynthesis. GO enrichment analysis showed that chlorophyll metabolism and redox process were also notably enriched. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated remarkable responses of photosynthetic characteristics and antioxidative system, and identified MYB, NAC, and WRKY transcription factors which played key roles in the Cd-stress response and regulation by TiO<sub>2</sub> NPs. Under 5 mmol·L<sup>-1</sup> Cd stress, daylily growth was severely inhibited, and cell membrane permeability and osmolytes significantly increased. Additionally, Cd stress pronouncedly impaired photosynthesis, increased the accumulation of reactive oxygen species in leaves, and inhibited the activities of most antioxidants. However, foliar spraying of 200 mg·L<sup>-1</sup> TiO<sub>2</sub> NPs promoted plant growth and increased osmolytes. The inhibition on leaf photosynthetic antenna proteins, photosystem reaction center activity, electron transfer rate, chlorophyll synthesis, and Calvin cycle process was markedly alleviated by upregulating corresponding gene expression as revealed by photosynthesis-related traits and DEG analysis. The activities of key enzymes in ascorbate-glutathione (AsA-GSH) cycle and thioredoxin-peroxiredoxin (Trx-Prx) pathway were enhanced, and the regeneration of AsA and GSH was promoted. Overall, TiO<sub>2</sub> NPs mitigated Cd-induced inhibition of photosynthesis and antioxidative system, and enhanced Cd tolerance of daylily.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 5","pages":"105"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO<sub>2</sub> nanoparticles improves cadmium toxicity tolerance in Hemerocallis citrina Baroni by modulating photosynthetic and antioxidative profile.\",\"authors\":\"Wei Liu, Yuwei Feng, Shuo Chen, Rui Chu, Siyue Li, Yue Wang, Yongqing Yan\",\"doi\":\"10.1007/s00299-025-03502-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>TiO<sub>2</sub> nanoparticles mitigates the toxicity of Cd to Hemerocallis citrina Baroni (daylily) by modulating the photosynthetic and antioxidative system, as revealed by physiological and transcriptomic analysis. Cadmium (Cd) is a common heavy metal pollutant exerting toxicity to plants. The unique physiochemical properties of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) suggest their potential applications in agriculture. The molecular and physiological responses of Hemerocallis citrina Baroni (daylily) to Cd stress and the ameliorative effect of TiO<sub>2</sub> NPs were investigated. KEGG enrichment analysis on differentially expressed genes (DEGs) revealed pronounced enrichment of pathways related to photosynthesis. GO enrichment analysis showed that chlorophyll metabolism and redox process were also notably enriched. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated remarkable responses of photosynthetic characteristics and antioxidative system, and identified MYB, NAC, and WRKY transcription factors which played key roles in the Cd-stress response and regulation by TiO<sub>2</sub> NPs. Under 5 mmol·L<sup>-1</sup> Cd stress, daylily growth was severely inhibited, and cell membrane permeability and osmolytes significantly increased. Additionally, Cd stress pronouncedly impaired photosynthesis, increased the accumulation of reactive oxygen species in leaves, and inhibited the activities of most antioxidants. However, foliar spraying of 200 mg·L<sup>-1</sup> TiO<sub>2</sub> NPs promoted plant growth and increased osmolytes. The inhibition on leaf photosynthetic antenna proteins, photosystem reaction center activity, electron transfer rate, chlorophyll synthesis, and Calvin cycle process was markedly alleviated by upregulating corresponding gene expression as revealed by photosynthesis-related traits and DEG analysis. The activities of key enzymes in ascorbate-glutathione (AsA-GSH) cycle and thioredoxin-peroxiredoxin (Trx-Prx) pathway were enhanced, and the regeneration of AsA and GSH was promoted. Overall, TiO<sub>2</sub> NPs mitigated Cd-induced inhibition of photosynthesis and antioxidative system, and enhanced Cd tolerance of daylily.</p>\",\"PeriodicalId\":20204,\"journal\":{\"name\":\"Plant Cell Reports\",\"volume\":\"44 5\",\"pages\":\"105\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00299-025-03502-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03502-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
TiO2 nanoparticles improves cadmium toxicity tolerance in Hemerocallis citrina Baroni by modulating photosynthetic and antioxidative profile.
Key message: TiO2 nanoparticles mitigates the toxicity of Cd to Hemerocallis citrina Baroni (daylily) by modulating the photosynthetic and antioxidative system, as revealed by physiological and transcriptomic analysis. Cadmium (Cd) is a common heavy metal pollutant exerting toxicity to plants. The unique physiochemical properties of titanium dioxide nanoparticles (TiO2 NPs) suggest their potential applications in agriculture. The molecular and physiological responses of Hemerocallis citrina Baroni (daylily) to Cd stress and the ameliorative effect of TiO2 NPs were investigated. KEGG enrichment analysis on differentially expressed genes (DEGs) revealed pronounced enrichment of pathways related to photosynthesis. GO enrichment analysis showed that chlorophyll metabolism and redox process were also notably enriched. Furthermore, weighted gene co-expression network analysis (WGCNA) demonstrated remarkable responses of photosynthetic characteristics and antioxidative system, and identified MYB, NAC, and WRKY transcription factors which played key roles in the Cd-stress response and regulation by TiO2 NPs. Under 5 mmol·L-1 Cd stress, daylily growth was severely inhibited, and cell membrane permeability and osmolytes significantly increased. Additionally, Cd stress pronouncedly impaired photosynthesis, increased the accumulation of reactive oxygen species in leaves, and inhibited the activities of most antioxidants. However, foliar spraying of 200 mg·L-1 TiO2 NPs promoted plant growth and increased osmolytes. The inhibition on leaf photosynthetic antenna proteins, photosystem reaction center activity, electron transfer rate, chlorophyll synthesis, and Calvin cycle process was markedly alleviated by upregulating corresponding gene expression as revealed by photosynthesis-related traits and DEG analysis. The activities of key enzymes in ascorbate-glutathione (AsA-GSH) cycle and thioredoxin-peroxiredoxin (Trx-Prx) pathway were enhanced, and the regeneration of AsA and GSH was promoted. Overall, TiO2 NPs mitigated Cd-induced inhibition of photosynthesis and antioxidative system, and enhanced Cd tolerance of daylily.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.