Ioannis P Androulakis, Limei Cheng, Carolyn R Cho, Tongli Zhang
{"title":"利用大型语言模型来比较集成QSP和AI/ML的观点。","authors":"Ioannis P Androulakis, Limei Cheng, Carolyn R Cho, Tongli Zhang","doi":"10.1007/s10928-025-09976-5","DOIUrl":null,"url":null,"abstract":"<p><p>Two recent papers offer contrasting perspectives on integrating Quantitative Systems Pharmacology (QSP) and Artificial Intelligence/Machine Learning (AI/ML): one views QSP as the primary driver using AI/ML to enhance computational tasks, while the other argues that AI/ML should provide an alternative mechanistic framework. Rather than perpetuate this tension, we used Large Language Models (LLMs) to examine both papers in two tests-one comparing their core arguments and another probing which methodology LLM should take precedence. Repeating each test multiple times with an identical and neutral prompt, the LLM revealed that each perspective suits specific stages of the drug development pipeline. QSP offers mechanistic rigor and regulatory clarity, and AI/ML excels in high-dimensional data analysis and exploratory modeling. A hybrid approach might best serve researchers and decision-makers, especially when harmonizing data-driven insights with mechanistic integrity. This exercise also highlights the potential of LLMs as promising tools for synthesizing complex information, offering an arguably less biased viewpoint that can trigger deeper discussion from the broader community seeking to align QSP and AI/ML in model-informed drug development (MIDD). By combining our human expertise with AI-driven analyses, we hope to further discuss with the scientific community how QSP and AI/ML-and the synergy between them-can drive innovation in therapeutic discovery and optimization.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"29"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging large language models to compare perspectives on integrating QSP and AI/ML.\",\"authors\":\"Ioannis P Androulakis, Limei Cheng, Carolyn R Cho, Tongli Zhang\",\"doi\":\"10.1007/s10928-025-09976-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two recent papers offer contrasting perspectives on integrating Quantitative Systems Pharmacology (QSP) and Artificial Intelligence/Machine Learning (AI/ML): one views QSP as the primary driver using AI/ML to enhance computational tasks, while the other argues that AI/ML should provide an alternative mechanistic framework. Rather than perpetuate this tension, we used Large Language Models (LLMs) to examine both papers in two tests-one comparing their core arguments and another probing which methodology LLM should take precedence. Repeating each test multiple times with an identical and neutral prompt, the LLM revealed that each perspective suits specific stages of the drug development pipeline. QSP offers mechanistic rigor and regulatory clarity, and AI/ML excels in high-dimensional data analysis and exploratory modeling. A hybrid approach might best serve researchers and decision-makers, especially when harmonizing data-driven insights with mechanistic integrity. This exercise also highlights the potential of LLMs as promising tools for synthesizing complex information, offering an arguably less biased viewpoint that can trigger deeper discussion from the broader community seeking to align QSP and AI/ML in model-informed drug development (MIDD). By combining our human expertise with AI-driven analyses, we hope to further discuss with the scientific community how QSP and AI/ML-and the synergy between them-can drive innovation in therapeutic discovery and optimization.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 3\",\"pages\":\"29\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09976-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09976-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Leveraging large language models to compare perspectives on integrating QSP and AI/ML.
Two recent papers offer contrasting perspectives on integrating Quantitative Systems Pharmacology (QSP) and Artificial Intelligence/Machine Learning (AI/ML): one views QSP as the primary driver using AI/ML to enhance computational tasks, while the other argues that AI/ML should provide an alternative mechanistic framework. Rather than perpetuate this tension, we used Large Language Models (LLMs) to examine both papers in two tests-one comparing their core arguments and another probing which methodology LLM should take precedence. Repeating each test multiple times with an identical and neutral prompt, the LLM revealed that each perspective suits specific stages of the drug development pipeline. QSP offers mechanistic rigor and regulatory clarity, and AI/ML excels in high-dimensional data analysis and exploratory modeling. A hybrid approach might best serve researchers and decision-makers, especially when harmonizing data-driven insights with mechanistic integrity. This exercise also highlights the potential of LLMs as promising tools for synthesizing complex information, offering an arguably less biased viewpoint that can trigger deeper discussion from the broader community seeking to align QSP and AI/ML in model-informed drug development (MIDD). By combining our human expertise with AI-driven analyses, we hope to further discuss with the scientific community how QSP and AI/ML-and the synergy between them-can drive innovation in therapeutic discovery and optimization.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.