Miguel Anchundia, Gualberto León-Revelo, Stalin Santacruz, Freddy Torres
{"title":"利用马铃薯液体淀粉渣优化培养条件制备米根霉M10A1 β-葡聚糖","authors":"Miguel Anchundia, Gualberto León-Revelo, Stalin Santacruz, Freddy Torres","doi":"10.3390/polym17091283","DOIUrl":null,"url":null,"abstract":"<p><p>β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from <i>Rhizopus oryzae</i> using liquid waste from potato starch processing. In this regard, the fermentation conditions to produce β-glucans from <i>Rhizopus oryzae</i> M10A1 were optimized using the one variable at a time (OVAT) and response surface methodology (RSM). The β-glucans were chemically characterized by determining moisture, nitrogen, protein, fat, ash, and total carbohydrates. The color, molecular weight, β-glucan content, monosaccharide composition, and structural and conformational characteristics were assessed by colorimetry, gel permeation chromatography, high-performance liquid chromatography, and Fourier transform infrared spectroscopy, respectively. The microbial indicators, mesophilic aerobes, molds, yeasts, and <i>Escherichia coli</i> were quantified following ISO standard protocols. Optimization indicated that supplementation with 0.8% (<i>w</i>/<i>v</i>) glucose and ammonium sulfate enhanced heteroglycan production (3254.56 mg/100 g of biomass). The β-glucans exhibited high purity, a light brown color, a molecular weight of 450 kDa, and a composition predominantly consisting of glucose and galactose. These findings suggest that β-glucans from <i>Rhizopus oryzae</i> M10A1 could be used for food and health applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Production of β-Glucans from <i>Rhizopus oryzae</i> M10A1 by Optimizing Culture Conditions Using Liquid Potato Starch Waste.\",\"authors\":\"Miguel Anchundia, Gualberto León-Revelo, Stalin Santacruz, Freddy Torres\",\"doi\":\"10.3390/polym17091283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from <i>Rhizopus oryzae</i> using liquid waste from potato starch processing. In this regard, the fermentation conditions to produce β-glucans from <i>Rhizopus oryzae</i> M10A1 were optimized using the one variable at a time (OVAT) and response surface methodology (RSM). The β-glucans were chemically characterized by determining moisture, nitrogen, protein, fat, ash, and total carbohydrates. The color, molecular weight, β-glucan content, monosaccharide composition, and structural and conformational characteristics were assessed by colorimetry, gel permeation chromatography, high-performance liquid chromatography, and Fourier transform infrared spectroscopy, respectively. The microbial indicators, mesophilic aerobes, molds, yeasts, and <i>Escherichia coli</i> were quantified following ISO standard protocols. Optimization indicated that supplementation with 0.8% (<i>w</i>/<i>v</i>) glucose and ammonium sulfate enhanced heteroglycan production (3254.56 mg/100 g of biomass). The β-glucans exhibited high purity, a light brown color, a molecular weight of 450 kDa, and a composition predominantly consisting of glucose and galactose. These findings suggest that β-glucans from <i>Rhizopus oryzae</i> M10A1 could be used for food and health applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091283\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091283","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Production of β-Glucans from Rhizopus oryzae M10A1 by Optimizing Culture Conditions Using Liquid Potato Starch Waste.
β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from Rhizopus oryzae using liquid waste from potato starch processing. In this regard, the fermentation conditions to produce β-glucans from Rhizopus oryzae M10A1 were optimized using the one variable at a time (OVAT) and response surface methodology (RSM). The β-glucans were chemically characterized by determining moisture, nitrogen, protein, fat, ash, and total carbohydrates. The color, molecular weight, β-glucan content, monosaccharide composition, and structural and conformational characteristics were assessed by colorimetry, gel permeation chromatography, high-performance liquid chromatography, and Fourier transform infrared spectroscopy, respectively. The microbial indicators, mesophilic aerobes, molds, yeasts, and Escherichia coli were quantified following ISO standard protocols. Optimization indicated that supplementation with 0.8% (w/v) glucose and ammonium sulfate enhanced heteroglycan production (3254.56 mg/100 g of biomass). The β-glucans exhibited high purity, a light brown color, a molecular weight of 450 kDa, and a composition predominantly consisting of glucose and galactose. These findings suggest that β-glucans from Rhizopus oryzae M10A1 could be used for food and health applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.