Xiaoxia Guo, Chaofan Wang, Lihong Fan, Jie Wang, Qianqiu Wang, Chenfan Duan, Ban Chen, Heshuang Dai
{"title":"一种负载阿霉素的聚合物纳米载体,具有2,2'-联萘-1,1'-二醇基骨架和单宁酸涂层,用于增强稳定性和抗肿瘤应用。","authors":"Xiaoxia Guo, Chaofan Wang, Lihong Fan, Jie Wang, Qianqiu Wang, Chenfan Duan, Ban Chen, Heshuang Dai","doi":"10.1088/1361-6528/add26d","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents PBVT, a polyurethane-based nano-drug delivery system incorporating BINOL (2,2'-binaphthyl-1,1'-diol), tannic acid (TA), and phenylboronic acid (PBA), to overcome critical challenges in cancer therapy such as low drug-loading capacity, nanoparticle instability, and systemic toxicity. Polyurethane was chosen as the base material due to its exceptional versatility, offering tunable mechanical properties, biocompatibility, and chemical stability, making it ideal for constructing robust nanocarriers for drug delivery. BINOL is incorporated for the first time into a nano polyurethane framework, featuring dual naphthalene rings that enable strong π-π stacking interactions with doxorubicin (DOX), achieving a high drug-loading capacity (48.6%) and encapsulation efficiency (89.8%). TA enhances system stability and biocompatibility through hydrogen bonding, while its phenolic hydroxyl groups provide antioxidant and antibacterial properties, reducing infection risks during chemotherapy. PBA is integrated into the polyurethane backbone adding pH-responsive drug release capabilities, allowing selective and controlled release of DOX in acidic tumor microenvironments. In vitro, cellular experiments confirmed the low cytotoxicity of PBVT against normal cells and the potent anticancer activity of PBVT-DOX in tumor cells in a dose-dependent manner. The system demonstrated sustained drug release and stability for over two weeks under physiological conditions. PBVT-DOX represents a novel, efficient platform for targeted cancer therapy and the development of advanced polyurethane-based nanomaterials for biomedical applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A doxorubicin-loaded polymeric nanocarrier with 2,2'-binaphthyl-1,1'-diol-based backbone and tannic acid coating for enhanced stability and antitumor applications.\",\"authors\":\"Xiaoxia Guo, Chaofan Wang, Lihong Fan, Jie Wang, Qianqiu Wang, Chenfan Duan, Ban Chen, Heshuang Dai\",\"doi\":\"10.1088/1361-6528/add26d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents PBVT, a polyurethane-based nano-drug delivery system incorporating BINOL (2,2'-binaphthyl-1,1'-diol), tannic acid (TA), and phenylboronic acid (PBA), to overcome critical challenges in cancer therapy such as low drug-loading capacity, nanoparticle instability, and systemic toxicity. Polyurethane was chosen as the base material due to its exceptional versatility, offering tunable mechanical properties, biocompatibility, and chemical stability, making it ideal for constructing robust nanocarriers for drug delivery. BINOL is incorporated for the first time into a nano polyurethane framework, featuring dual naphthalene rings that enable strong π-π stacking interactions with doxorubicin (DOX), achieving a high drug-loading capacity (48.6%) and encapsulation efficiency (89.8%). TA enhances system stability and biocompatibility through hydrogen bonding, while its phenolic hydroxyl groups provide antioxidant and antibacterial properties, reducing infection risks during chemotherapy. PBA is integrated into the polyurethane backbone adding pH-responsive drug release capabilities, allowing selective and controlled release of DOX in acidic tumor microenvironments. In vitro, cellular experiments confirmed the low cytotoxicity of PBVT against normal cells and the potent anticancer activity of PBVT-DOX in tumor cells in a dose-dependent manner. The system demonstrated sustained drug release and stability for over two weeks under physiological conditions. PBVT-DOX represents a novel, efficient platform for targeted cancer therapy and the development of advanced polyurethane-based nanomaterials for biomedical applications.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/add26d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add26d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A doxorubicin-loaded polymeric nanocarrier with 2,2'-binaphthyl-1,1'-diol-based backbone and tannic acid coating for enhanced stability and antitumor applications.
This study presents PBVT, a polyurethane-based nano-drug delivery system incorporating BINOL (2,2'-binaphthyl-1,1'-diol), tannic acid (TA), and phenylboronic acid (PBA), to overcome critical challenges in cancer therapy such as low drug-loading capacity, nanoparticle instability, and systemic toxicity. Polyurethane was chosen as the base material due to its exceptional versatility, offering tunable mechanical properties, biocompatibility, and chemical stability, making it ideal for constructing robust nanocarriers for drug delivery. BINOL is incorporated for the first time into a nano polyurethane framework, featuring dual naphthalene rings that enable strong π-π stacking interactions with doxorubicin (DOX), achieving a high drug-loading capacity (48.6%) and encapsulation efficiency (89.8%). TA enhances system stability and biocompatibility through hydrogen bonding, while its phenolic hydroxyl groups provide antioxidant and antibacterial properties, reducing infection risks during chemotherapy. PBA is integrated into the polyurethane backbone adding pH-responsive drug release capabilities, allowing selective and controlled release of DOX in acidic tumor microenvironments. In vitro, cellular experiments confirmed the low cytotoxicity of PBVT against normal cells and the potent anticancer activity of PBVT-DOX in tumor cells in a dose-dependent manner. The system demonstrated sustained drug release and stability for over two weeks under physiological conditions. PBVT-DOX represents a novel, efficient platform for targeted cancer therapy and the development of advanced polyurethane-based nanomaterials for biomedical applications.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.