Thomas M Grand, James K Pitman, Alexander L Williams, Lisa M Smith, Andrew J Fleming
{"title":"发芽抑制剂CIPC基因靶点的鉴定。","authors":"Thomas M Grand, James K Pitman, Alexander L Williams, Lisa M Smith, Andrew J Fleming","doi":"10.1002/pld3.70068","DOIUrl":null,"url":null,"abstract":"<p><p>Sprout suppressants are widely used in industry to ensure year-round availability of potato tubers, significantly decreasing wastage by repressing premature growth of buds on the tuber surface during storage. Despite its ban from 2020 in the EU, isopropyl <i>N</i>-(3-chlorophenyl) carbamate (also known as chlorpropham or CIPC) remains the most widely used suppressant worldwide. However, the mechanism of action of CIPC remains obscure. Here, we report on a combined targeted transcriptomic and genetic approach to identify components in the tuber bud cell-division machinery that might be involved in CIPC's mode of action. This involved RNAseq analysis of dissected, staged tuber buds during in vitro sprouting with and without CIPC to identify lead genes, followed by the development and application of an Arabidopsis root assay to assess cell division response to CIPC in selected mutants. The ease of use of this model plant, coupled with its immense genetic resources, allowed us to test the functionality of lead genes encoding cell-division-associated proteins in the modulation of plant growth response to CIPC. This approach led to the identification of a component of the augmin complex (a core player in mitosis) as a potential target for CIPC.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 4","pages":"e70068"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982522/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of Gene Targets for the Sprouting Inhibitor CIPC.\",\"authors\":\"Thomas M Grand, James K Pitman, Alexander L Williams, Lisa M Smith, Andrew J Fleming\",\"doi\":\"10.1002/pld3.70068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sprout suppressants are widely used in industry to ensure year-round availability of potato tubers, significantly decreasing wastage by repressing premature growth of buds on the tuber surface during storage. Despite its ban from 2020 in the EU, isopropyl <i>N</i>-(3-chlorophenyl) carbamate (also known as chlorpropham or CIPC) remains the most widely used suppressant worldwide. However, the mechanism of action of CIPC remains obscure. Here, we report on a combined targeted transcriptomic and genetic approach to identify components in the tuber bud cell-division machinery that might be involved in CIPC's mode of action. This involved RNAseq analysis of dissected, staged tuber buds during in vitro sprouting with and without CIPC to identify lead genes, followed by the development and application of an Arabidopsis root assay to assess cell division response to CIPC in selected mutants. The ease of use of this model plant, coupled with its immense genetic resources, allowed us to test the functionality of lead genes encoding cell-division-associated proteins in the modulation of plant growth response to CIPC. This approach led to the identification of a component of the augmin complex (a core player in mitosis) as a potential target for CIPC.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"9 4\",\"pages\":\"e70068\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982522/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70068\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Identification of Gene Targets for the Sprouting Inhibitor CIPC.
Sprout suppressants are widely used in industry to ensure year-round availability of potato tubers, significantly decreasing wastage by repressing premature growth of buds on the tuber surface during storage. Despite its ban from 2020 in the EU, isopropyl N-(3-chlorophenyl) carbamate (also known as chlorpropham or CIPC) remains the most widely used suppressant worldwide. However, the mechanism of action of CIPC remains obscure. Here, we report on a combined targeted transcriptomic and genetic approach to identify components in the tuber bud cell-division machinery that might be involved in CIPC's mode of action. This involved RNAseq analysis of dissected, staged tuber buds during in vitro sprouting with and without CIPC to identify lead genes, followed by the development and application of an Arabidopsis root assay to assess cell division response to CIPC in selected mutants. The ease of use of this model plant, coupled with its immense genetic resources, allowed us to test the functionality of lead genes encoding cell-division-associated proteins in the modulation of plant growth response to CIPC. This approach led to the identification of a component of the augmin complex (a core player in mitosis) as a potential target for CIPC.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.