{"title":"高脂肪饮食限制成年雄性小鼠维持正常体重,但通过破坏线粒体氧化磷酸化导致肝脏损伤。","authors":"Chun‐Hsien Chiang , Pu‐Sheng Hsu , Shau‐Ping Lin , Ching‐Yi Chen","doi":"10.1016/j.jnutbio.2025.109941","DOIUrl":null,"url":null,"abstract":"<div><div>Dietary restriction (DR) delays aging and supports health primarily through its effects on mitochondrial function. Conversely, a high-fat diet (HFD) with excess calories promotes obesity and health risks via mitochondrial dysfunction. However, the role of an HFD in the benefits of DR remains unclear. This study investigated whether sustainable and intermittent DR with an HFD positively affects liver and heart health. Mice were assigned to four groups: chow diet <em>ad libitum</em> (CTR), HFD <em>ad libitum</em> (H), 60% HFD intake (HDR), and intermittent HFD restriction with weight cycling (WC). The results showed that the mice in the HDR and WC groups had reduced body weight, while animals in neither group had lower blood glucose levels compared to the H group. Hepatic steatosis, fibrosis, and NAFLD activity scores were similar in H, HDR, and WC mice but were higher than in CTR mice. The livers of mice in the HDR and WC groups also showed reduced ATP content and altered protein expressions related to mitochondrial dynamics. Liver in animals from the H group exhibited reduced LC3I expression and an increased LC3II to LC3I ratio compared with liver CTR. In contrast, livers of animals in the HDR and WC groups showed lower levels of p62, LC3I, and LC3II expression. Fibrosis was observed in the hearts of mice in the CTR and H groups, and DR did not reverse this damage. In conclusion, although HFD restriction maintained body weight, it adversely affected liver health by disrupting mitochondrial function. These findings emphasize the critical role of dietary fat in liver health when adopting calorie-restricted therapy.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"143 ","pages":"Article 109941"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-fat diet restriction to adult male mice maintains normal body weight but leads to liver impairment by disrupting mitochondrial oxidative phosphorylation\",\"authors\":\"Chun‐Hsien Chiang , Pu‐Sheng Hsu , Shau‐Ping Lin , Ching‐Yi Chen\",\"doi\":\"10.1016/j.jnutbio.2025.109941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dietary restriction (DR) delays aging and supports health primarily through its effects on mitochondrial function. Conversely, a high-fat diet (HFD) with excess calories promotes obesity and health risks via mitochondrial dysfunction. However, the role of an HFD in the benefits of DR remains unclear. This study investigated whether sustainable and intermittent DR with an HFD positively affects liver and heart health. Mice were assigned to four groups: chow diet <em>ad libitum</em> (CTR), HFD <em>ad libitum</em> (H), 60% HFD intake (HDR), and intermittent HFD restriction with weight cycling (WC). The results showed that the mice in the HDR and WC groups had reduced body weight, while animals in neither group had lower blood glucose levels compared to the H group. Hepatic steatosis, fibrosis, and NAFLD activity scores were similar in H, HDR, and WC mice but were higher than in CTR mice. The livers of mice in the HDR and WC groups also showed reduced ATP content and altered protein expressions related to mitochondrial dynamics. Liver in animals from the H group exhibited reduced LC3I expression and an increased LC3II to LC3I ratio compared with liver CTR. In contrast, livers of animals in the HDR and WC groups showed lower levels of p62, LC3I, and LC3II expression. Fibrosis was observed in the hearts of mice in the CTR and H groups, and DR did not reverse this damage. In conclusion, although HFD restriction maintained body weight, it adversely affected liver health by disrupting mitochondrial function. These findings emphasize the critical role of dietary fat in liver health when adopting calorie-restricted therapy.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"143 \",\"pages\":\"Article 109941\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325001044\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325001044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High-fat diet restriction to adult male mice maintains normal body weight but leads to liver impairment by disrupting mitochondrial oxidative phosphorylation
Dietary restriction (DR) delays aging and supports health primarily through its effects on mitochondrial function. Conversely, a high-fat diet (HFD) with excess calories promotes obesity and health risks via mitochondrial dysfunction. However, the role of an HFD in the benefits of DR remains unclear. This study investigated whether sustainable and intermittent DR with an HFD positively affects liver and heart health. Mice were assigned to four groups: chow diet ad libitum (CTR), HFD ad libitum (H), 60% HFD intake (HDR), and intermittent HFD restriction with weight cycling (WC). The results showed that the mice in the HDR and WC groups had reduced body weight, while animals in neither group had lower blood glucose levels compared to the H group. Hepatic steatosis, fibrosis, and NAFLD activity scores were similar in H, HDR, and WC mice but were higher than in CTR mice. The livers of mice in the HDR and WC groups also showed reduced ATP content and altered protein expressions related to mitochondrial dynamics. Liver in animals from the H group exhibited reduced LC3I expression and an increased LC3II to LC3I ratio compared with liver CTR. In contrast, livers of animals in the HDR and WC groups showed lower levels of p62, LC3I, and LC3II expression. Fibrosis was observed in the hearts of mice in the CTR and H groups, and DR did not reverse this damage. In conclusion, although HFD restriction maintained body weight, it adversely affected liver health by disrupting mitochondrial function. These findings emphasize the critical role of dietary fat in liver health when adopting calorie-restricted therapy.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.