Rodrigo A Morales Castro, Bianca C Kern, Angélica Díaz-Basabe, Eveline R Meinen, Danxia Zhao, Yuqing Zhou, Francisca Castillo, Gustavo Monasterio, Vlad Farcas, Myra N Chávez, Jennifer Fransson, Eduardo J Villablanca
{"title":"斑马鱼肠上皮损伤模型显示巨噬细胞和igfbp1a是粘膜愈合的主要调节剂。","authors":"Rodrigo A Morales Castro, Bianca C Kern, Angélica Díaz-Basabe, Eveline R Meinen, Danxia Zhao, Yuqing Zhou, Francisca Castillo, Gustavo Monasterio, Vlad Farcas, Myra N Chávez, Jennifer Fransson, Eduardo J Villablanca","doi":"10.1016/j.mucimm.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zebrafish model of intestinal epithelial damage reveals macrophages and igfbp1a as major modulators of mucosal healing.\",\"authors\":\"Rodrigo A Morales Castro, Bianca C Kern, Angélica Díaz-Basabe, Eveline R Meinen, Danxia Zhao, Yuqing Zhou, Francisca Castillo, Gustavo Monasterio, Vlad Farcas, Myra N Chávez, Jennifer Fransson, Eduardo J Villablanca\",\"doi\":\"10.1016/j.mucimm.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2025.04.004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.04.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A zebrafish model of intestinal epithelial damage reveals macrophages and igfbp1a as major modulators of mucosal healing.
Promoting intestinal regeneration and enhancing mucosal healing have emerged as promising therapeutic alternatives for treating intestinal disorders that compromise epithelial barrier integrity and function. However, the cellular and molecular mechanisms underlying these processes remain poorly understood. This knowledge gap is partly due to the lack of reliable and cost-effective in vivo models for studying the mechanisms governing intestinal damage and regeneration. Here, we developed a controlled, inducible, and targeted intestinal epithelial cell (IEC) ablation transgenic zebrafish model that recapitulates features of intestinal damage and regeneration observed in humans. Single-cell RNAseq and live imaging revealed accumulation of macrophages in the recovering intestine, contributing to its regeneration. Furthermore, we observed overexpression of insulin-like growth factor binding protein 1a (igfbp1a) during intestinal damage. Morpholino-mediated knockdown of igfbp1a exacerbated intestinal damage and impaired subsequent regeneration. In summary, we introduced a novel zebrafish model of intestinal damage that enables in vivo high-throughput screening for identifying and validating novel modulators of mucosal healing and intestinal regeneration.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.