{"title":"具有梯度波浪形结构的仿生层间杂化复合材料层合板的低速抗冲击性能。","authors":"Shicai Zhao , Deyuan Zhang","doi":"10.1016/j.actbio.2025.04.046","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores a bio-inspired design methodology for interlayer layups in hybrid carbon fiber reinforced polymer composites to enhance impact resistance. An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The 3K-PUP laminate exhibited a 10.2 % increase in peak contact force, an impressive 80.7 % reduction in damage area upon impact, and a 46.2 % increase in energy dissipation compared to traditional laminates. Additionally, the hybrid laminates displayed superior load-bearing capacity, with the 3K-PUP laminate achieving a 6.6 % increase in residual compressive strength. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.</div></div><div><h3>Statement of Significance</h3><div>An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"199 ","pages":"Pages 178-192"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-velocity impact resistance of bio-inspired interlayer hybrid composite laminates with a gradient waviness structure\",\"authors\":\"Shicai Zhao , Deyuan Zhang\",\"doi\":\"10.1016/j.actbio.2025.04.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores a bio-inspired design methodology for interlayer layups in hybrid carbon fiber reinforced polymer composites to enhance impact resistance. An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The 3K-PUP laminate exhibited a 10.2 % increase in peak contact force, an impressive 80.7 % reduction in damage area upon impact, and a 46.2 % increase in energy dissipation compared to traditional laminates. Additionally, the hybrid laminates displayed superior load-bearing capacity, with the 3K-PUP laminate achieving a 6.6 % increase in residual compressive strength. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.</div></div><div><h3>Statement of Significance</h3><div>An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"199 \",\"pages\":\"Pages 178-192\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125002971\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125002971","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Low-velocity impact resistance of bio-inspired interlayer hybrid composite laminates with a gradient waviness structure
This study explores a bio-inspired design methodology for interlayer layups in hybrid carbon fiber reinforced polymer composites to enhance impact resistance. An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The 3K-PUP laminate exhibited a 10.2 % increase in peak contact force, an impressive 80.7 % reduction in damage area upon impact, and a 46.2 % increase in energy dissipation compared to traditional laminates. Additionally, the hybrid laminates displayed superior load-bearing capacity, with the 3K-PUP laminate achieving a 6.6 % increase in residual compressive strength. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.
Statement of Significance
An impact-resistant and damage tolerance gradient waviness structure is discovered in the rapid mandible strike of trap-jaw ants. Inspired by this natural design, a gradient waviness structure was incorporated into fiber interlayer formation to improve impact resistance. Bio-inspired interlayer hybrid laminates, combining unidirectional fibers with multiple woven fabric arrangements, were fabricated using a mold press forming technique. The results demonstrate that the bio-inspired gradient waviness structure plays a crucial role in limiting crack propagation and generating large in elastic deformation. The bio-inspired laminates effectively provided crack tip shielding and enhanced fracture resistance mechanisms, significantly improving damage tolerance against through-the-thickness diffusion of impact damage.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.