Miguel A. Boland, Jonathan P. E. Lightley, Edwin Garcia, Sunil Kumar, Chris Dunsby, Seth Flaxman, Mark A. A. Neil, Paul M. W. French, Edward A. K. Cohen
{"title":"基于无模型机器学习的3D单分子定位显微镜。","authors":"Miguel A. Boland, Jonathan P. E. Lightley, Edwin Garcia, Sunil Kumar, Chris Dunsby, Seth Flaxman, Mark A. A. Neil, Paul M. W. French, Edward A. K. Cohen","doi":"10.1111/jmi.13420","DOIUrl":null,"url":null,"abstract":"<p>Single molecule localisation microscopy (SMLM) can provide two-dimensional super-resolved image data from conventional fluorescence microscopes, while three dimensional (3D) SMLM usually involves a modification of the microscope, for example, to engineer a predictable axial variation in the point spread function. Here we demonstrate a 3D SMLM approach (we call <i>‘easyZloc'</i>) utilising a lightweight Convolutional Neural Network that is generally applicable, including with ‘standard’ (unmodified) fluorescence microscopes, and which we consider may be practically useful in a high throughput SMLM workflow. We demonstrate the reconstruction of nuclear pore complexes with comparable performance to previously reported methods but with a significant reduction in computational power and execution time. 3D reconstructions of the nuclear envelope and an actin sample over a larger axial range are also shown.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":"299 1","pages":"77-87"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13420","citationCount":"0","resultStr":"{\"title\":\"Model-free machine learning-based 3D single molecule localisation microscopy\",\"authors\":\"Miguel A. Boland, Jonathan P. E. Lightley, Edwin Garcia, Sunil Kumar, Chris Dunsby, Seth Flaxman, Mark A. A. Neil, Paul M. W. French, Edward A. K. Cohen\",\"doi\":\"10.1111/jmi.13420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single molecule localisation microscopy (SMLM) can provide two-dimensional super-resolved image data from conventional fluorescence microscopes, while three dimensional (3D) SMLM usually involves a modification of the microscope, for example, to engineer a predictable axial variation in the point spread function. Here we demonstrate a 3D SMLM approach (we call <i>‘easyZloc'</i>) utilising a lightweight Convolutional Neural Network that is generally applicable, including with ‘standard’ (unmodified) fluorescence microscopes, and which we consider may be practically useful in a high throughput SMLM workflow. We demonstrate the reconstruction of nuclear pore complexes with comparable performance to previously reported methods but with a significant reduction in computational power and execution time. 3D reconstructions of the nuclear envelope and an actin sample over a larger axial range are also shown.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\"299 1\",\"pages\":\"77-87\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmi.13420\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13420\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmi.13420","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Model-free machine learning-based 3D single molecule localisation microscopy
Single molecule localisation microscopy (SMLM) can provide two-dimensional super-resolved image data from conventional fluorescence microscopes, while three dimensional (3D) SMLM usually involves a modification of the microscope, for example, to engineer a predictable axial variation in the point spread function. Here we demonstrate a 3D SMLM approach (we call ‘easyZloc') utilising a lightweight Convolutional Neural Network that is generally applicable, including with ‘standard’ (unmodified) fluorescence microscopes, and which we consider may be practically useful in a high throughput SMLM workflow. We demonstrate the reconstruction of nuclear pore complexes with comparable performance to previously reported methods but with a significant reduction in computational power and execution time. 3D reconstructions of the nuclear envelope and an actin sample over a larger axial range are also shown.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.