脑岛解剖定位的数学和动态建模。

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eren Ogut
{"title":"脑岛解剖定位的数学和动态建模。","authors":"Eren Ogut","doi":"10.1007/s12021-025-09727-4","DOIUrl":null,"url":null,"abstract":"<p><p>The insula, a deeply situated cortical structure beneath the Sylvian sulcus, plays a critical role in sensory integration, emotion regulation, and cognitive control in the brain. Although several studies have described its anatomical and functional characteristics, mathematical models that quantitatively represent the insula's complex structure and connectivity are lacking. This study aimed to develop a mathematical model to represent the anatomical localization and functional organization of the insula, drawing on current neuroimaging findings and established anatomical data. A three-dimensional (3D) ellipsoid model was constructed to mathematically represent the anatomical boundaries of the insula using Montreal Neurological Institute (MNI) coordinate data. This geometric model adapts the ellipsoid equation to reflect the spatial configuration of the insula and is primarily based on cytoarchitectonic mapping and anatomical literature. Relevant findings from prior imaging research, particularly those reporting microstructural variations across insular subdivisions, were reviewed and conceptually integrated to guide the model's structural assumptions and interpretation of potential applications. The ellipsoid-based 3D model accurately represented the anatomical dimensions and spatial localization of the right insula, centered at the MNI coordinates (40, 5, 5 mm), and matched well with the known volumetric data. Functional regions (face, hand, and foot) were successfully plotted within the model, and statistical analysis confirmed significant differences along the anteroposterior and superoinferior axes (p < 0.01 and p < 0.05, respectively). Dynamic simulations revealed oscillatory patterns of excitatory and inhibitory neural activity, consistent with established insular neurophysiology. Additionally, connectivity modeling demonstrated strong bidirectional interactions between the insula and key regions, such as the prefrontal cortex and anterior cingulate cortex (ACC), reflecting its integrative role in brain networks. This study presents a scientifically validated mathematical model that captures the anatomical structure, functional subdivisions, and dynamic connectivity patterns of the insula. By integrating anatomical data with computational simulations, this model provides a foundation for future research in neuroimaging, functional mapping, and clinical applications involving insula-related disorders.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"29"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018515/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical and Dynamic Modeling of the Anatomical Localization of the Insula in the Brain.\",\"authors\":\"Eren Ogut\",\"doi\":\"10.1007/s12021-025-09727-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The insula, a deeply situated cortical structure beneath the Sylvian sulcus, plays a critical role in sensory integration, emotion regulation, and cognitive control in the brain. Although several studies have described its anatomical and functional characteristics, mathematical models that quantitatively represent the insula's complex structure and connectivity are lacking. This study aimed to develop a mathematical model to represent the anatomical localization and functional organization of the insula, drawing on current neuroimaging findings and established anatomical data. A three-dimensional (3D) ellipsoid model was constructed to mathematically represent the anatomical boundaries of the insula using Montreal Neurological Institute (MNI) coordinate data. This geometric model adapts the ellipsoid equation to reflect the spatial configuration of the insula and is primarily based on cytoarchitectonic mapping and anatomical literature. Relevant findings from prior imaging research, particularly those reporting microstructural variations across insular subdivisions, were reviewed and conceptually integrated to guide the model's structural assumptions and interpretation of potential applications. The ellipsoid-based 3D model accurately represented the anatomical dimensions and spatial localization of the right insula, centered at the MNI coordinates (40, 5, 5 mm), and matched well with the known volumetric data. Functional regions (face, hand, and foot) were successfully plotted within the model, and statistical analysis confirmed significant differences along the anteroposterior and superoinferior axes (p < 0.01 and p < 0.05, respectively). Dynamic simulations revealed oscillatory patterns of excitatory and inhibitory neural activity, consistent with established insular neurophysiology. Additionally, connectivity modeling demonstrated strong bidirectional interactions between the insula and key regions, such as the prefrontal cortex and anterior cingulate cortex (ACC), reflecting its integrative role in brain networks. This study presents a scientifically validated mathematical model that captures the anatomical structure, functional subdivisions, and dynamic connectivity patterns of the insula. By integrating anatomical data with computational simulations, this model provides a foundation for future research in neuroimaging, functional mapping, and clinical applications involving insula-related disorders.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"23 2\",\"pages\":\"29\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018515/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-025-09727-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09727-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

脑岛是位于脑侧沟下方的深层皮层结构,在大脑的感觉整合、情绪调节和认知控制中起着至关重要的作用。虽然有一些研究描述了它的解剖和功能特征,但定量表征脑岛复杂结构和连通性的数学模型尚缺乏。本研究旨在利用当前的神经影像学发现和已建立的解剖学数据,建立一个数学模型来表示脑岛的解剖定位和功能组织。利用蒙特利尔神经学研究所(Montreal Neurological Institute, MNI)的坐标数据,构建一个三维(3D)椭球模型,以数学方式表示脑岛的解剖边界。该几何模型采用椭球方程来反映脑岛的空间结构,主要基于细胞结构映射和解剖学文献。回顾了先前影像学研究的相关发现,特别是那些报道了岛屿细分的微观结构变化的研究结果,并在概念上进行了整合,以指导模型的结构假设和潜在应用的解释。基于椭球体的三维模型准确表征了右脑岛的解剖尺寸和空间定位,以MNI坐标(40,5,5 mm)为中心,与已知的体积数据匹配良好。在模型中成功绘制了功能区(面部、手部和足部),统计分析证实了前后轴和上下轴的显著差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical and Dynamic Modeling of the Anatomical Localization of the Insula in the Brain.

The insula, a deeply situated cortical structure beneath the Sylvian sulcus, plays a critical role in sensory integration, emotion regulation, and cognitive control in the brain. Although several studies have described its anatomical and functional characteristics, mathematical models that quantitatively represent the insula's complex structure and connectivity are lacking. This study aimed to develop a mathematical model to represent the anatomical localization and functional organization of the insula, drawing on current neuroimaging findings and established anatomical data. A three-dimensional (3D) ellipsoid model was constructed to mathematically represent the anatomical boundaries of the insula using Montreal Neurological Institute (MNI) coordinate data. This geometric model adapts the ellipsoid equation to reflect the spatial configuration of the insula and is primarily based on cytoarchitectonic mapping and anatomical literature. Relevant findings from prior imaging research, particularly those reporting microstructural variations across insular subdivisions, were reviewed and conceptually integrated to guide the model's structural assumptions and interpretation of potential applications. The ellipsoid-based 3D model accurately represented the anatomical dimensions and spatial localization of the right insula, centered at the MNI coordinates (40, 5, 5 mm), and matched well with the known volumetric data. Functional regions (face, hand, and foot) were successfully plotted within the model, and statistical analysis confirmed significant differences along the anteroposterior and superoinferior axes (p < 0.01 and p < 0.05, respectively). Dynamic simulations revealed oscillatory patterns of excitatory and inhibitory neural activity, consistent with established insular neurophysiology. Additionally, connectivity modeling demonstrated strong bidirectional interactions between the insula and key regions, such as the prefrontal cortex and anterior cingulate cortex (ACC), reflecting its integrative role in brain networks. This study presents a scientifically validated mathematical model that captures the anatomical structure, functional subdivisions, and dynamic connectivity patterns of the insula. By integrating anatomical data with computational simulations, this model provides a foundation for future research in neuroimaging, functional mapping, and clinical applications involving insula-related disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信