基于神经网络的拓扑优化结构后处理代理模型。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Computing & Applications Pub Date : 2025-01-01 Epub Date: 2025-02-28 DOI:10.1007/s00521-025-11039-2
Jude Thaddeus Persia, Myung Kyun Sung, Soobum Lee, Devin E Burns
{"title":"基于神经网络的拓扑优化结构后处理代理模型。","authors":"Jude Thaddeus Persia, Myung Kyun Sung, Soobum Lee, Devin E Burns","doi":"10.1007/s00521-025-11039-2","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a general method of creating an accurate neural network-based surrogate model for postprocessing a topologically optimized structure. When topology optimization results are converted into computer-aided design (CAD) files with smooth boundaries for manufacturability, finite element method (FEM) based stresses often do not agree with the topology optimized results due to changes of surface and mesh density. The conversion between topology optimization derived results and CAD files often requires postprocessing, an additional fine tuning of the geometry parameters to reconcile the change of the stress values. In this work, a feedforward, deep artificial neural network (DANN) is presented with varying architecture parameters that are found for each stress output of interest. This network is trained with the data based on a combination of Design of Experiments (DoE) models that have the geometry dimensions as inputs and stress readings under various loads as the outputs. A DANN-based surrogate model is constructed to enable fine tuning of all relevant stress performance metrics. This method of constructing an artificial network-based surrogate model minimizes the number of FEM computations required to generate an optimized, post-processed design. We present a case study of postprocessing a wind tunnel balance, a measurement device that yields the six force and moment components of a test aircraft. It needs to be designed considering multiple stress measures under combinations of the six loading conditions. Excellent performance of a neural network is presented in this paper in terms of accurate prediction of the highly nonlinear stresses under combinations of the six loads. Von Mises stress predictions are within 10% and axial force sensor stress predictions are within 2% for the final post-processed topology. The results support its usefulness for postprocessing of topology optimized structures.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"37 15","pages":"8845-8867"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neural network-based surrogate model in postprocessing of topology optimized structures.\",\"authors\":\"Jude Thaddeus Persia, Myung Kyun Sung, Soobum Lee, Devin E Burns\",\"doi\":\"10.1007/s00521-025-11039-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a general method of creating an accurate neural network-based surrogate model for postprocessing a topologically optimized structure. When topology optimization results are converted into computer-aided design (CAD) files with smooth boundaries for manufacturability, finite element method (FEM) based stresses often do not agree with the topology optimized results due to changes of surface and mesh density. The conversion between topology optimization derived results and CAD files often requires postprocessing, an additional fine tuning of the geometry parameters to reconcile the change of the stress values. In this work, a feedforward, deep artificial neural network (DANN) is presented with varying architecture parameters that are found for each stress output of interest. This network is trained with the data based on a combination of Design of Experiments (DoE) models that have the geometry dimensions as inputs and stress readings under various loads as the outputs. A DANN-based surrogate model is constructed to enable fine tuning of all relevant stress performance metrics. This method of constructing an artificial network-based surrogate model minimizes the number of FEM computations required to generate an optimized, post-processed design. We present a case study of postprocessing a wind tunnel balance, a measurement device that yields the six force and moment components of a test aircraft. It needs to be designed considering multiple stress measures under combinations of the six loading conditions. Excellent performance of a neural network is presented in this paper in terms of accurate prediction of the highly nonlinear stresses under combinations of the six loads. Von Mises stress predictions are within 10% and axial force sensor stress predictions are within 2% for the final post-processed topology. The results support its usefulness for postprocessing of topology optimized structures.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"37 15\",\"pages\":\"8845-8867\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-025-11039-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-025-11039-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种创建精确的基于神经网络的代理模型的通用方法,用于对拓扑优化结构进行后处理。在将拓扑优化结果转换为具有光滑可制造性边界的计算机辅助设计(CAD)文件时,由于表面和网格密度的变化,基于有限元法(FEM)的应力往往与拓扑优化结果不一致。拓扑优化结果与CAD文件之间的转换通常需要后处理,对几何参数进行额外的微调以协调应力值的变化。在这项工作中,提出了一个前馈深度人工神经网络(DANN),该网络具有针对每个感兴趣的应力输出找到的不同架构参数。该网络使用基于实验设计(DoE)模型组合的数据进行训练,该模型将几何尺寸作为输入,并将各种负载下的应力读数作为输出。构建了基于dann的代理模型,以实现所有相关应力性能指标的微调。这种构建基于人工网络的代理模型的方法最大限度地减少了生成优化后处理设计所需的FEM计算次数。我们提出了一个风洞平衡后处理的案例研究,风洞平衡是一种测量装置,可以产生测试飞机的六个力和力矩分量。在设计时需要考虑六种荷载条件组合下的多种应力措施。本文介绍了神经网络在六种载荷组合作用下高度非线性应力的准确预测方面的优异性能。对于最终的后处理拓扑,Von Mises应力预测在10%以内,轴向力传感器应力预测在2%以内。结果支持了该方法对拓扑优化结构后处理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-based surrogate model in postprocessing of topology optimized structures.

This paper proposes a general method of creating an accurate neural network-based surrogate model for postprocessing a topologically optimized structure. When topology optimization results are converted into computer-aided design (CAD) files with smooth boundaries for manufacturability, finite element method (FEM) based stresses often do not agree with the topology optimized results due to changes of surface and mesh density. The conversion between topology optimization derived results and CAD files often requires postprocessing, an additional fine tuning of the geometry parameters to reconcile the change of the stress values. In this work, a feedforward, deep artificial neural network (DANN) is presented with varying architecture parameters that are found for each stress output of interest. This network is trained with the data based on a combination of Design of Experiments (DoE) models that have the geometry dimensions as inputs and stress readings under various loads as the outputs. A DANN-based surrogate model is constructed to enable fine tuning of all relevant stress performance metrics. This method of constructing an artificial network-based surrogate model minimizes the number of FEM computations required to generate an optimized, post-processed design. We present a case study of postprocessing a wind tunnel balance, a measurement device that yields the six force and moment components of a test aircraft. It needs to be designed considering multiple stress measures under combinations of the six loading conditions. Excellent performance of a neural network is presented in this paper in terms of accurate prediction of the highly nonlinear stresses under combinations of the six loads. Von Mises stress predictions are within 10% and axial force sensor stress predictions are within 2% for the final post-processed topology. The results support its usefulness for postprocessing of topology optimized structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信