{"title":"间歇性高氧可通过改善代谢特性和毛细血管特征来促进训练良好的雄性小鼠的运动表现。","authors":"Junichi Suzuki","doi":"10.14814/phy2.70341","DOIUrl":null,"url":null,"abstract":"<p><p>Although training under intermittent hyperoxia has been shown to improve exercise performance, its effect on well-trained mice remains undetermined. Voluntary run for 7 weeks increased maximal work values by 7.4-fold (Bayes factor, BF ≥ 30). Subsequently, mice underwent 4 weeks of treadmill training with (INT) or without (ET) intermittent hyperoxia (30% O<sub>2</sub>). INT training significantly increased maximal exercise capacity compared to ET (BF ≥ 30). INT group exhibited significantly higher levels of cytochrome-c-oxidase (COX) in soleus muscle (SOL, BF ≥ 3.0). Additionally, INT enhanced 3-hydroxyacyl-CoA-dehydrogenase (HAD) levels in white gastrocnemius (Gw) and plantaris (PL) muscles compared to ET (BF ≥ 3.0). Pyruvate dehydrogenase complex (PDHc) levels were significantly higher in the INT group compared to the ET group in red gastrocnemius and left ventricle (BF ≥ 30). Capillary-to-fiber ratio (C/F) was significantly higher in the INT group than in the ET group in SOL and PL muscles (BF ≥ 3.0). COX, PDHc, capillary density (CD), and catalase protein values in SOL, HAD, and C/F levels in Gw and PL, as well as CD values in Gw showed a significant positive correlation with maximal work values using data from ET and INT groups (p < 0.05). These findings suggest that training under intermittent hyperoxia promotes endurance performance probably by improving metabolic enzyme levels and capillary profiles in well-trained mice.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 8","pages":"e70341"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012744/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exercise performance in well-trained male mice is promoted by intermittent hyperoxia via improving metabolic properties and capillary profiles.\",\"authors\":\"Junichi Suzuki\",\"doi\":\"10.14814/phy2.70341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although training under intermittent hyperoxia has been shown to improve exercise performance, its effect on well-trained mice remains undetermined. Voluntary run for 7 weeks increased maximal work values by 7.4-fold (Bayes factor, BF ≥ 30). Subsequently, mice underwent 4 weeks of treadmill training with (INT) or without (ET) intermittent hyperoxia (30% O<sub>2</sub>). INT training significantly increased maximal exercise capacity compared to ET (BF ≥ 30). INT group exhibited significantly higher levels of cytochrome-c-oxidase (COX) in soleus muscle (SOL, BF ≥ 3.0). Additionally, INT enhanced 3-hydroxyacyl-CoA-dehydrogenase (HAD) levels in white gastrocnemius (Gw) and plantaris (PL) muscles compared to ET (BF ≥ 3.0). Pyruvate dehydrogenase complex (PDHc) levels were significantly higher in the INT group compared to the ET group in red gastrocnemius and left ventricle (BF ≥ 30). Capillary-to-fiber ratio (C/F) was significantly higher in the INT group than in the ET group in SOL and PL muscles (BF ≥ 3.0). COX, PDHc, capillary density (CD), and catalase protein values in SOL, HAD, and C/F levels in Gw and PL, as well as CD values in Gw showed a significant positive correlation with maximal work values using data from ET and INT groups (p < 0.05). These findings suggest that training under intermittent hyperoxia promotes endurance performance probably by improving metabolic enzyme levels and capillary profiles in well-trained mice.</p>\",\"PeriodicalId\":20083,\"journal\":{\"name\":\"Physiological Reports\",\"volume\":\"13 8\",\"pages\":\"e70341\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012744/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14814/phy2.70341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Exercise performance in well-trained male mice is promoted by intermittent hyperoxia via improving metabolic properties and capillary profiles.
Although training under intermittent hyperoxia has been shown to improve exercise performance, its effect on well-trained mice remains undetermined. Voluntary run for 7 weeks increased maximal work values by 7.4-fold (Bayes factor, BF ≥ 30). Subsequently, mice underwent 4 weeks of treadmill training with (INT) or without (ET) intermittent hyperoxia (30% O2). INT training significantly increased maximal exercise capacity compared to ET (BF ≥ 30). INT group exhibited significantly higher levels of cytochrome-c-oxidase (COX) in soleus muscle (SOL, BF ≥ 3.0). Additionally, INT enhanced 3-hydroxyacyl-CoA-dehydrogenase (HAD) levels in white gastrocnemius (Gw) and plantaris (PL) muscles compared to ET (BF ≥ 3.0). Pyruvate dehydrogenase complex (PDHc) levels were significantly higher in the INT group compared to the ET group in red gastrocnemius and left ventricle (BF ≥ 30). Capillary-to-fiber ratio (C/F) was significantly higher in the INT group than in the ET group in SOL and PL muscles (BF ≥ 3.0). COX, PDHc, capillary density (CD), and catalase protein values in SOL, HAD, and C/F levels in Gw and PL, as well as CD values in Gw showed a significant positive correlation with maximal work values using data from ET and INT groups (p < 0.05). These findings suggest that training under intermittent hyperoxia promotes endurance performance probably by improving metabolic enzyme levels and capillary profiles in well-trained mice.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.