{"title":"综合基因组谱检测在Lynch综合征筛查中的作用独立于传统临床筛查或微卫星不稳定性试验。","authors":"Mizuki Yamaguchi, Shintaro Akabane, Hiroaki Niitsu, Hikaru Nakahara, Asuka Toshida, Tetsuya Mochizuki, Takuya Yano, Yoshihiro Saeki, Hiroshi Okuda, Manabu Shimomura, Kazuhiro Sentani, Kiwamu Akagi, Hideki Ohdan, Takao Hinoi","doi":"10.1038/s10038-025-01345-x","DOIUrl":null,"url":null,"abstract":"<p><p>Lynch syndrome (LS) is a hereditary cancer predisposition syndrome caused by germline pathogenic variants of DNA mismatch repair (MMR) genes. To diagnose LS, the microsatellite instability (MSI) test or immunohistochemistry of MMR enzymes is used as a conventional clinical screening method for all patients with colorectal and endometrial cancers. Recently, patients with advanced-stage cancers have undergone comprehensive genomic profiling (CGP), which is useful not only for the detection of molecularly targeted personalized therapies, but also for the screening of hereditary cancer syndromes by determining presumed germline pathogenic variants (PGPVs). Between January 2020 and April 2024, 1583 patients underwent CGP at our institute. PGPVs in MMR genes were detected in 19 patients. Although one patient died prior to the disclosure of the results and eight patients declined confirmatory genetic testing, the remaining ten patients underwent confirmatory genetic tests, of whom six were found to have a hereditary origin. Two additional patients were diagnosed with LS using tumor-normal paired CGP. Eventually, a total of eight patients were diagnosed with LS. Herein, we describe two patients with microsatellite-stable cancer who could not be diagnosed using conventional clinical screening or MSI testing. Furthermore, we showed that pathogenic variants of MMR genes do not always correlate with high MSI prediction scores in several cancer types in The Cancer Genome Atlas (TCGA) dataset analysis. These findings highlight the usefulness of CGP as a screening tool to identify individuals with possible LS, especially when conventional criteria and MSI/MMR testing fail.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The usefulness of comprehensive genome profiling test in screening of Lynch syndrome independent of the conventional clinical screening or microsatellite instability tests.\",\"authors\":\"Mizuki Yamaguchi, Shintaro Akabane, Hiroaki Niitsu, Hikaru Nakahara, Asuka Toshida, Tetsuya Mochizuki, Takuya Yano, Yoshihiro Saeki, Hiroshi Okuda, Manabu Shimomura, Kazuhiro Sentani, Kiwamu Akagi, Hideki Ohdan, Takao Hinoi\",\"doi\":\"10.1038/s10038-025-01345-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lynch syndrome (LS) is a hereditary cancer predisposition syndrome caused by germline pathogenic variants of DNA mismatch repair (MMR) genes. To diagnose LS, the microsatellite instability (MSI) test or immunohistochemistry of MMR enzymes is used as a conventional clinical screening method for all patients with colorectal and endometrial cancers. Recently, patients with advanced-stage cancers have undergone comprehensive genomic profiling (CGP), which is useful not only for the detection of molecularly targeted personalized therapies, but also for the screening of hereditary cancer syndromes by determining presumed germline pathogenic variants (PGPVs). Between January 2020 and April 2024, 1583 patients underwent CGP at our institute. PGPVs in MMR genes were detected in 19 patients. Although one patient died prior to the disclosure of the results and eight patients declined confirmatory genetic testing, the remaining ten patients underwent confirmatory genetic tests, of whom six were found to have a hereditary origin. Two additional patients were diagnosed with LS using tumor-normal paired CGP. Eventually, a total of eight patients were diagnosed with LS. Herein, we describe two patients with microsatellite-stable cancer who could not be diagnosed using conventional clinical screening or MSI testing. Furthermore, we showed that pathogenic variants of MMR genes do not always correlate with high MSI prediction scores in several cancer types in The Cancer Genome Atlas (TCGA) dataset analysis. These findings highlight the usefulness of CGP as a screening tool to identify individuals with possible LS, especially when conventional criteria and MSI/MMR testing fail.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01345-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01345-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The usefulness of comprehensive genome profiling test in screening of Lynch syndrome independent of the conventional clinical screening or microsatellite instability tests.
Lynch syndrome (LS) is a hereditary cancer predisposition syndrome caused by germline pathogenic variants of DNA mismatch repair (MMR) genes. To diagnose LS, the microsatellite instability (MSI) test or immunohistochemistry of MMR enzymes is used as a conventional clinical screening method for all patients with colorectal and endometrial cancers. Recently, patients with advanced-stage cancers have undergone comprehensive genomic profiling (CGP), which is useful not only for the detection of molecularly targeted personalized therapies, but also for the screening of hereditary cancer syndromes by determining presumed germline pathogenic variants (PGPVs). Between January 2020 and April 2024, 1583 patients underwent CGP at our institute. PGPVs in MMR genes were detected in 19 patients. Although one patient died prior to the disclosure of the results and eight patients declined confirmatory genetic testing, the remaining ten patients underwent confirmatory genetic tests, of whom six were found to have a hereditary origin. Two additional patients were diagnosed with LS using tumor-normal paired CGP. Eventually, a total of eight patients were diagnosed with LS. Herein, we describe two patients with microsatellite-stable cancer who could not be diagnosed using conventional clinical screening or MSI testing. Furthermore, we showed that pathogenic variants of MMR genes do not always correlate with high MSI prediction scores in several cancer types in The Cancer Genome Atlas (TCGA) dataset analysis. These findings highlight the usefulness of CGP as a screening tool to identify individuals with possible LS, especially when conventional criteria and MSI/MMR testing fail.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.