{"title":"揭示硫化氢与其他信号分子的作用和串扰,增强植物对缺水的耐受性。","authors":"Diksha Bagal, Anuj Guleria, Aksar Ali Chowdhary, Praveen Kumar Verma, Sonal Mishra, Sonica Rathore, Vikas Srivastava","doi":"10.1111/ppl.70222","DOIUrl":null,"url":null,"abstract":"<p><p>Drought, a major factor limiting global crop yields, disrupts plant growth, water interactions, and overall water use efficiency. Hydrogen sulfide (H<sub>2</sub>S), a key gasotransmitter, has become a crucial signalling molecule in plant biology. It promotes growth and development while significantly contributing to the plant's response to various abiotic stresses, including drought. This review explores how H₂S mitigates drought stress in plants and crosstalks with various signalling molecules such as nitric oxide, melatonin, abscisic acid, γ-aminobutyric acid, polyamines, and others. It highlights how these interactions, with H₂S acting either upstream or downstream, enhance the plant's stress response and resistance. Furthermore, H₂S signalling involves persulfidation, in which H₂S modifies protein thiol groups to protect against oxidative damage. The review underscores the key role of protein persulfidation in reducing reactive oxygen species accumulation and maintaining redox homeostasis under drought stress. The review aims to elucidate the role of H₂S in stress relief and expand our knowledge of how it contributes to plant resistance during water scarcity by examining its regulatory mechanisms and interactions. Additionally, it proposes practical strategies for enhancing agricultural practices in the face of growing drought conditions, offering methods to leverage H₂S for improving plant tolerance to water scarcity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70222"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the role and crosstalk of hydrogen sulfide with other signalling molecules enhances plant tolerance to water scarcity.\",\"authors\":\"Diksha Bagal, Anuj Guleria, Aksar Ali Chowdhary, Praveen Kumar Verma, Sonal Mishra, Sonica Rathore, Vikas Srivastava\",\"doi\":\"10.1111/ppl.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought, a major factor limiting global crop yields, disrupts plant growth, water interactions, and overall water use efficiency. Hydrogen sulfide (H<sub>2</sub>S), a key gasotransmitter, has become a crucial signalling molecule in plant biology. It promotes growth and development while significantly contributing to the plant's response to various abiotic stresses, including drought. This review explores how H₂S mitigates drought stress in plants and crosstalks with various signalling molecules such as nitric oxide, melatonin, abscisic acid, γ-aminobutyric acid, polyamines, and others. It highlights how these interactions, with H₂S acting either upstream or downstream, enhance the plant's stress response and resistance. Furthermore, H₂S signalling involves persulfidation, in which H₂S modifies protein thiol groups to protect against oxidative damage. The review underscores the key role of protein persulfidation in reducing reactive oxygen species accumulation and maintaining redox homeostasis under drought stress. The review aims to elucidate the role of H₂S in stress relief and expand our knowledge of how it contributes to plant resistance during water scarcity by examining its regulatory mechanisms and interactions. Additionally, it proposes practical strategies for enhancing agricultural practices in the face of growing drought conditions, offering methods to leverage H₂S for improving plant tolerance to water scarcity.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70222\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70222\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Unveiling the role and crosstalk of hydrogen sulfide with other signalling molecules enhances plant tolerance to water scarcity.
Drought, a major factor limiting global crop yields, disrupts plant growth, water interactions, and overall water use efficiency. Hydrogen sulfide (H2S), a key gasotransmitter, has become a crucial signalling molecule in plant biology. It promotes growth and development while significantly contributing to the plant's response to various abiotic stresses, including drought. This review explores how H₂S mitigates drought stress in plants and crosstalks with various signalling molecules such as nitric oxide, melatonin, abscisic acid, γ-aminobutyric acid, polyamines, and others. It highlights how these interactions, with H₂S acting either upstream or downstream, enhance the plant's stress response and resistance. Furthermore, H₂S signalling involves persulfidation, in which H₂S modifies protein thiol groups to protect against oxidative damage. The review underscores the key role of protein persulfidation in reducing reactive oxygen species accumulation and maintaining redox homeostasis under drought stress. The review aims to elucidate the role of H₂S in stress relief and expand our knowledge of how it contributes to plant resistance during water scarcity by examining its regulatory mechanisms and interactions. Additionally, it proposes practical strategies for enhancing agricultural practices in the face of growing drought conditions, offering methods to leverage H₂S for improving plant tolerance to water scarcity.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.