{"title":"训练免疫减轻了败血症相关免疫麻痹期间黑色素瘤的进展。","authors":"Lijie Yin, Yue Dong, Renjie Luo, Jingman Li, Jiali Wang, Huan Dou, Guangfeng Zhao, Yayi Hou","doi":"10.1007/s13402-025-01063-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients who survive the excessive inflammatory phase of sepsis experience prolonged immunoparalysis/immunosuppression. During this phase, the patient's immune system is severely impaired, which increases the patient's susceptibility to septic complications. Sepsis survivors have a significantly greater incidence of cancer, but the mechanism underlying this phenomenon is unknown.</p><p><strong>Methods: </strong>We constructed two sepsis-melanoma models to assess the relationship between sepsis and sepsis-related concomitant cancer. In our investigation, we employed a range of experimental technique to elucidate the intricate mechanisms through which the immunoparalysis phase of sepsis facilitates melanoma progression. Furthermore, we induced trained immunity with oroxylin A (OA) to evaluate its ability to reverse immunoparalysis and subsequent tumor progression in sepsis-melanoma models.</p><p><strong>Results: </strong>We showed that sepsis upregulated the serum level of interleukin (IL)-6 and the number of myeloid-derived suppressor cells (MDSCs), regulated G-MDSCs/M-MDSCs and inhibited CD8<sup>+</sup>T-cell function, which promoted melanoma progression. OA-induced trained immunity can reverse immunoparalysis, maintain the antitumor capacity of the immune system, and inhibit the development of sepsis-complicated melanoma. Notably, OA can target macrophage migration inhibitory factor (MIF) and downregulate the serum level of IL-6, which may be a crucial molecular mechanism by which OA induces trained immunity to reverse the immunoparalysis phase of sepsis.</p><p><strong>Conclusion: </strong>Sepsis can promote cancer progression by upregulating MIF and IL-6, increasing the G-MDSCs/M-MDSCs ratio and reducing the number and function of CD8<sup>+</sup> T cells, leading to immunoparalysis, while trained immunity can alleviate this progression. The findings of this study provide new strategies for preventing or treating sepsis-complicated cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1047-1065"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238141/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trained immunity alleviates the progression of melanoma during sepsis-associated immunoparalysis.\",\"authors\":\"Lijie Yin, Yue Dong, Renjie Luo, Jingman Li, Jiali Wang, Huan Dou, Guangfeng Zhao, Yayi Hou\",\"doi\":\"10.1007/s13402-025-01063-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients who survive the excessive inflammatory phase of sepsis experience prolonged immunoparalysis/immunosuppression. During this phase, the patient's immune system is severely impaired, which increases the patient's susceptibility to septic complications. Sepsis survivors have a significantly greater incidence of cancer, but the mechanism underlying this phenomenon is unknown.</p><p><strong>Methods: </strong>We constructed two sepsis-melanoma models to assess the relationship between sepsis and sepsis-related concomitant cancer. In our investigation, we employed a range of experimental technique to elucidate the intricate mechanisms through which the immunoparalysis phase of sepsis facilitates melanoma progression. Furthermore, we induced trained immunity with oroxylin A (OA) to evaluate its ability to reverse immunoparalysis and subsequent tumor progression in sepsis-melanoma models.</p><p><strong>Results: </strong>We showed that sepsis upregulated the serum level of interleukin (IL)-6 and the number of myeloid-derived suppressor cells (MDSCs), regulated G-MDSCs/M-MDSCs and inhibited CD8<sup>+</sup>T-cell function, which promoted melanoma progression. OA-induced trained immunity can reverse immunoparalysis, maintain the antitumor capacity of the immune system, and inhibit the development of sepsis-complicated melanoma. Notably, OA can target macrophage migration inhibitory factor (MIF) and downregulate the serum level of IL-6, which may be a crucial molecular mechanism by which OA induces trained immunity to reverse the immunoparalysis phase of sepsis.</p><p><strong>Conclusion: </strong>Sepsis can promote cancer progression by upregulating MIF and IL-6, increasing the G-MDSCs/M-MDSCs ratio and reducing the number and function of CD8<sup>+</sup> T cells, leading to immunoparalysis, while trained immunity can alleviate this progression. The findings of this study provide new strategies for preventing or treating sepsis-complicated cancer.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"1047-1065\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238141/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-025-01063-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-025-01063-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:在脓毒症过度炎症期存活的患者会经历长期的免疫麻痹/免疫抑制。在这个阶段,病人的免疫系统严重受损,这增加了病人对脓毒症并发症的易感性。脓毒症幸存者的癌症发病率明显更高,但这一现象背后的机制尚不清楚。方法:我们构建了两个脓毒症-黑色素瘤模型来评估脓毒症与脓毒症相关的伴发癌之间的关系。在我们的研究中,我们采用了一系列实验技术来阐明脓毒症免疫麻痹期促进黑色素瘤进展的复杂机制。此外,我们用oroxylin A (OA)诱导训练免疫,以评估其在败血症-黑色素瘤模型中逆转免疫麻痹和随后肿瘤进展的能力。结果:我们发现脓毒症上调血清白细胞介素(IL)-6水平和髓源性抑制细胞(MDSCs)数量,调节G-MDSCs/M-MDSCs,抑制CD8+ t细胞功能,促进黑色素瘤的进展。oa诱导的训练免疫可以逆转免疫麻痹,维持免疫系统的抗肿瘤能力,抑制脓毒症并发黑色素瘤的发展。值得注意的是,OA可以靶向巨噬细胞迁移抑制因子(macrophage migration inhibitory factor, MIF),下调血清IL-6水平,这可能是OA诱导训练免疫逆转败血症免疫麻痹期的重要分子机制。结论:脓毒症可通过上调MIF和IL-6,增加G-MDSCs/M-MDSCs的比例,降低CD8+ T细胞的数量和功能,促进肿瘤进展,导致免疫瘫痪,而训练后的免疫可缓解这种进展。本研究结果为预防或治疗败血症合并的癌症提供了新的策略。
Trained immunity alleviates the progression of melanoma during sepsis-associated immunoparalysis.
Background: Patients who survive the excessive inflammatory phase of sepsis experience prolonged immunoparalysis/immunosuppression. During this phase, the patient's immune system is severely impaired, which increases the patient's susceptibility to septic complications. Sepsis survivors have a significantly greater incidence of cancer, but the mechanism underlying this phenomenon is unknown.
Methods: We constructed two sepsis-melanoma models to assess the relationship between sepsis and sepsis-related concomitant cancer. In our investigation, we employed a range of experimental technique to elucidate the intricate mechanisms through which the immunoparalysis phase of sepsis facilitates melanoma progression. Furthermore, we induced trained immunity with oroxylin A (OA) to evaluate its ability to reverse immunoparalysis and subsequent tumor progression in sepsis-melanoma models.
Results: We showed that sepsis upregulated the serum level of interleukin (IL)-6 and the number of myeloid-derived suppressor cells (MDSCs), regulated G-MDSCs/M-MDSCs and inhibited CD8+T-cell function, which promoted melanoma progression. OA-induced trained immunity can reverse immunoparalysis, maintain the antitumor capacity of the immune system, and inhibit the development of sepsis-complicated melanoma. Notably, OA can target macrophage migration inhibitory factor (MIF) and downregulate the serum level of IL-6, which may be a crucial molecular mechanism by which OA induces trained immunity to reverse the immunoparalysis phase of sepsis.
Conclusion: Sepsis can promote cancer progression by upregulating MIF and IL-6, increasing the G-MDSCs/M-MDSCs ratio and reducing the number and function of CD8+ T cells, leading to immunoparalysis, while trained immunity can alleviate this progression. The findings of this study provide new strategies for preventing or treating sepsis-complicated cancer.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.