{"title":"RFX5通过转录激活JAG1促进三阴性乳腺癌的进展。","authors":"Chenhao Li, Xin Wang, Dongliang Shi, Meng Yang, Wenhua Yang, Liang Chen","doi":"10.1007/s13577-025-01216-9","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by high recurrence rates, low survival rates, and a lack of therapeutic targets. Regulatory Factor X5 (RFX5) is a critical transcription factor during tumor progression. However, the role of RFX5 involving breast cancer or TNBC has not been studied. This study obtained 60 tumor samples of TNBC for analysis and ascertained that RFX5 is linked with the severe stage. We constructed RFX5 knockdown and overexpression models involving TNBC cells. RFX5 overexpression enhanced TNBC cell proliferation by detecting cell vitality and replication of DNA and analyzing cell cycle data. RFX5 facilitated cell migration and invasion, which were determined by wound healing and Transwell assays. The anti-apoptotic RFX5 properties were confirmed with Hoechst staining and Annexin V/PI apoptosis assays. The Notch pathway was activated in TNBC, and Jagged canonical Notch ligand 1 (JAG1) could enhance TNBC growth and metastasis. RFX5 upregulation elevated JAG1 mRNA and protein levels. Chromatin immunoprecipitation and luciferase reporter assays indicated that RFX5 promoted the transcriptional activation of JAG1 by binding the promoter (- 1890/+ 15 or - 1359/+ 15 area). JAG1 knockdown reduced RFX5-induced expression of Notch signaling-related factors Notch1, NICD, and Hes1. This paper indicated that RFX5 is a transcription factor for JAG1 and established that RFX5 could activate the Notch pathway via transcriptional activation of JAG1 and promote TNBC progression. Targeting RFX5 could be a promising therapeutic approach against TNBC.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 3","pages":"86"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RFX5 promotes the progression of triple-negative breast cancer through transcriptional activation of JAG1.\",\"authors\":\"Chenhao Li, Xin Wang, Dongliang Shi, Meng Yang, Wenhua Yang, Liang Chen\",\"doi\":\"10.1007/s13577-025-01216-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by high recurrence rates, low survival rates, and a lack of therapeutic targets. Regulatory Factor X5 (RFX5) is a critical transcription factor during tumor progression. However, the role of RFX5 involving breast cancer or TNBC has not been studied. This study obtained 60 tumor samples of TNBC for analysis and ascertained that RFX5 is linked with the severe stage. We constructed RFX5 knockdown and overexpression models involving TNBC cells. RFX5 overexpression enhanced TNBC cell proliferation by detecting cell vitality and replication of DNA and analyzing cell cycle data. RFX5 facilitated cell migration and invasion, which were determined by wound healing and Transwell assays. The anti-apoptotic RFX5 properties were confirmed with Hoechst staining and Annexin V/PI apoptosis assays. The Notch pathway was activated in TNBC, and Jagged canonical Notch ligand 1 (JAG1) could enhance TNBC growth and metastasis. RFX5 upregulation elevated JAG1 mRNA and protein levels. Chromatin immunoprecipitation and luciferase reporter assays indicated that RFX5 promoted the transcriptional activation of JAG1 by binding the promoter (- 1890/+ 15 or - 1359/+ 15 area). JAG1 knockdown reduced RFX5-induced expression of Notch signaling-related factors Notch1, NICD, and Hes1. This paper indicated that RFX5 is a transcription factor for JAG1 and established that RFX5 could activate the Notch pathway via transcriptional activation of JAG1 and promote TNBC progression. Targeting RFX5 could be a promising therapeutic approach against TNBC.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 3\",\"pages\":\"86\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-025-01216-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01216-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
RFX5 promotes the progression of triple-negative breast cancer through transcriptional activation of JAG1.
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by high recurrence rates, low survival rates, and a lack of therapeutic targets. Regulatory Factor X5 (RFX5) is a critical transcription factor during tumor progression. However, the role of RFX5 involving breast cancer or TNBC has not been studied. This study obtained 60 tumor samples of TNBC for analysis and ascertained that RFX5 is linked with the severe stage. We constructed RFX5 knockdown and overexpression models involving TNBC cells. RFX5 overexpression enhanced TNBC cell proliferation by detecting cell vitality and replication of DNA and analyzing cell cycle data. RFX5 facilitated cell migration and invasion, which were determined by wound healing and Transwell assays. The anti-apoptotic RFX5 properties were confirmed with Hoechst staining and Annexin V/PI apoptosis assays. The Notch pathway was activated in TNBC, and Jagged canonical Notch ligand 1 (JAG1) could enhance TNBC growth and metastasis. RFX5 upregulation elevated JAG1 mRNA and protein levels. Chromatin immunoprecipitation and luciferase reporter assays indicated that RFX5 promoted the transcriptional activation of JAG1 by binding the promoter (- 1890/+ 15 or - 1359/+ 15 area). JAG1 knockdown reduced RFX5-induced expression of Notch signaling-related factors Notch1, NICD, and Hes1. This paper indicated that RFX5 is a transcription factor for JAG1 and established that RFX5 could activate the Notch pathway via transcriptional activation of JAG1 and promote TNBC progression. Targeting RFX5 could be a promising therapeutic approach against TNBC.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.