盲击:仅基于进化计算的合成少数过采样。

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nicolás E Garcí-Pedrajas, José M Cuevas-Muñoz, Aida de Haro-García
{"title":"盲击:仅基于进化计算的合成少数过采样。","authors":"Nicolás E Garcí-Pedrajas, José M Cuevas-Muñoz, Aida de Haro-García","doi":"10.1162/evco_a_00374","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most common problems in data mining applications is the uneven distribution of classes, which appears in many real-world scenarios. The class of interest is often highly underrepresented in the given dataset, which harms the performance of most classifiers. One of the most successful methods for addressing the class imbalance problem is to oversample the minority class using synthetic samples. Since the original algorithm, the synthetic minority oversampling technique (SMOTE), introduced this method, numerous versions have emerged, each of which is based on a specific hypothesis about where and how to generate new synthetic instances. In this paper, we propose a different approach based exclusively on evolutionary computation that imposes no constraints on the creation of new synthetic instances. Majority class undersampling is also incorporated into the evolutionary process. A thorough comparison involving three classification methods, 85 datasets, and more than 90 class-imbalance strategies shows the advantages of our proposal.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-35"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BlindSMOTE: Synthetic minority oversampling based only on evolutionary computation.\",\"authors\":\"Nicolás E Garcí-Pedrajas, José M Cuevas-Muñoz, Aida de Haro-García\",\"doi\":\"10.1162/evco_a_00374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most common problems in data mining applications is the uneven distribution of classes, which appears in many real-world scenarios. The class of interest is often highly underrepresented in the given dataset, which harms the performance of most classifiers. One of the most successful methods for addressing the class imbalance problem is to oversample the minority class using synthetic samples. Since the original algorithm, the synthetic minority oversampling technique (SMOTE), introduced this method, numerous versions have emerged, each of which is based on a specific hypothesis about where and how to generate new synthetic instances. In this paper, we propose a different approach based exclusively on evolutionary computation that imposes no constraints on the creation of new synthetic instances. Majority class undersampling is also incorporated into the evolutionary process. A thorough comparison involving three classification methods, 85 datasets, and more than 90 class-imbalance strategies shows the advantages of our proposal.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-35\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00374\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00374","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘应用程序中最常见的问题之一是类的不均匀分布,这在许多实际场景中都会出现。在给定的数据集中,感兴趣的类通常高度未被充分表示,这损害了大多数分类器的性能。解决类失衡问题最成功的方法之一是使用合成样本对少数类进行过采样。自最初的算法——合成少数派过采样技术(SMOTE)引入该方法以来,出现了许多版本,每个版本都基于一个特定的假设,即在哪里以及如何生成新的合成实例。在本文中,我们提出了一种完全基于进化计算的不同方法,该方法对新合成实例的创建没有任何约束。多数类欠采样也被纳入进化过程。通过对三种分类方法、85个数据集和90多种类别失衡策略的全面比较,我们的建议具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BlindSMOTE: Synthetic minority oversampling based only on evolutionary computation.

One of the most common problems in data mining applications is the uneven distribution of classes, which appears in many real-world scenarios. The class of interest is often highly underrepresented in the given dataset, which harms the performance of most classifiers. One of the most successful methods for addressing the class imbalance problem is to oversample the minority class using synthetic samples. Since the original algorithm, the synthetic minority oversampling technique (SMOTE), introduced this method, numerous versions have emerged, each of which is based on a specific hypothesis about where and how to generate new synthetic instances. In this paper, we propose a different approach based exclusively on evolutionary computation that imposes no constraints on the creation of new synthetic instances. Majority class undersampling is also incorporated into the evolutionary process. A thorough comparison involving three classification methods, 85 datasets, and more than 90 class-imbalance strategies shows the advantages of our proposal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信