植物修复在环境污染物降解中的前景:最新进展、挑战和前进方向。

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Prabhjot Singh Jassal, Pratik Suryakant Kudave, Atif Khurshid Wani, Tusha Yadav
{"title":"植物修复在环境污染物降解中的前景:最新进展、挑战和前进方向。","authors":"Prabhjot Singh Jassal, Pratik Suryakant Kudave, Atif Khurshid Wani, Tusha Yadav","doi":"10.1080/15226514.2025.2500643","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like <i>Brassica juncea</i>, <i>Pteris vittata</i>, and <i>Eichhornia crassipes</i>, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-18"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects of phytoremediation in degradation of environmental contaminants: recent advances, challenges and way forward.\",\"authors\":\"Prabhjot Singh Jassal, Pratik Suryakant Kudave, Atif Khurshid Wani, Tusha Yadav\",\"doi\":\"10.1080/15226514.2025.2500643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like <i>Brassica juncea</i>, <i>Pteris vittata</i>, and <i>Eichhornia crassipes</i>, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2500643\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2500643","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物修复作为一种环境友好、经济高效、可持续的解决土壤和水污染的方法已得到认可。本文对该技术在重金属、抗生素、塑料、放射性物质等污染物处理中的应用进行了深入分析。它强调了芥菜、维塔翼菜和凤头草等植物的有效性,这些植物已显示出显著的污染物吸收能力——去除浓度高达20,000 mg/kg的砷,并将废水中的铅减少高达75%。转基因技术和纳米技术的创新进一步提高了这些植物的耐受性和降解污染物的潜力。综述还探讨了土壤微生物、基于根际的降解以及纳米材料在推进植物修复中的作用。然而,一些挑战仍然存在,例如植物可获得的污染物有限,塑料废物分解缓慢,药物残留物吸收率低。这项工作概述了现有的研究差距,强调了监管和技术限制,并提出了前瞻性的方法,包括基于crispr的基因编辑、微生物伙伴关系和混合修复模型。植物修复技术虽然仍处于发展阶段,但作为修复污染环境的一种综合性方法,具有相当大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospects of phytoremediation in degradation of environmental contaminants: recent advances, challenges and way forward.

Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like Brassica juncea, Pteris vittata, and Eichhornia crassipes, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信