{"title":"植物修复在环境污染物降解中的前景:最新进展、挑战和前进方向。","authors":"Prabhjot Singh Jassal, Pratik Suryakant Kudave, Atif Khurshid Wani, Tusha Yadav","doi":"10.1080/15226514.2025.2500643","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like <i>Brassica juncea</i>, <i>Pteris vittata</i>, and <i>Eichhornia crassipes</i>, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-18"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects of phytoremediation in degradation of environmental contaminants: recent advances, challenges and way forward.\",\"authors\":\"Prabhjot Singh Jassal, Pratik Suryakant Kudave, Atif Khurshid Wani, Tusha Yadav\",\"doi\":\"10.1080/15226514.2025.2500643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like <i>Brassica juncea</i>, <i>Pteris vittata</i>, and <i>Eichhornia crassipes</i>, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2500643\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2500643","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Prospects of phytoremediation in degradation of environmental contaminants: recent advances, challenges and way forward.
Phytoremediation has gained recognition as an environmentally friendly, cost-efficient, and sustainable solution for addressing pollution in soil and water. This review provides an in-depth analysis of how this technique is applied to treat contaminants such as heavy metals, antibiotics, plastics, and radioactive substances. It emphasizes the effectiveness of plants like Brassica juncea, Pteris vittata, and Eichhornia crassipes, which have demonstrated significant pollutant uptake-removing arsenic concentrations as high as 20,000 mg/kg and reducing lead in wastewater by up to 75%. Innovations in genetic modification and nanotechnology have further enhanced the capabilities of these plants by boosting their tolerance and pollutant degradation potential. The review also explores the role of soil microbes, rhizosphere-based degradation, and the integration of nanomaterials in advancing phytoremediation. However, several challenges persist, such as limited pollutant availability to plants, slow breakdown of plastic waste, and low absorption rates for pharmaceutical residues. This work outlines existing research gaps, highlights regulatory and technical limitations, and proposes forward-looking approaches, including CRISPR-based gene editing, microbial partnerships, and hybrid remediation models. Although still developing, phytoremediation holds considerable promise as a comprehensive approach for restoring polluted environments.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.