用于实时数据处理的PvaPy流框架。

IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-05-01 Epub Date: 2025-04-25 DOI:10.1107/S1600577525002115
Siniša Veseli, John Hammonds, Steven Henke, Hannah Parraga, Barbara Frosik, Nicholas Schwarz
{"title":"用于实时数据处理的PvaPy流框架。","authors":"Siniša Veseli, John Hammonds, Steven Henke, Hannah Parraga, Barbara Frosik, Nicholas Schwarz","doi":"10.1107/S1600577525002115","DOIUrl":null,"url":null,"abstract":"<p><p>User facility upgrades, new measurement techniques, advances in data analysis algorithms as well as advances in detector capabilities result in an increasing amount of data collected at X-ray beamlines. Some of these data must be analyzed and reconstructed on demand to help execute experiments dynamically and modify them in real time. In turn, this requires a computing framework for real-time processing capable of moving data quickly from the detector to local or remote computing resources, processing data, and returning results to users. In this paper, we discuss the streaming framework built on top of PvaPy, a Python API for the EPICS pvAccess protocol. We describe the framework architecture and capabilities, and discuss scientific use cases and applications that benefit from streaming workflows implemented on top of this framework. We also illustrate the framework's performance in terms of achievable data-processing rates for various detector image sizes.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":"32 Pt 3","pages":"823-836"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067317/pdf/","citationCount":"0","resultStr":"{\"title\":\"PvaPy streaming framework for real-time data processing.\",\"authors\":\"Siniša Veseli, John Hammonds, Steven Henke, Hannah Parraga, Barbara Frosik, Nicholas Schwarz\",\"doi\":\"10.1107/S1600577525002115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>User facility upgrades, new measurement techniques, advances in data analysis algorithms as well as advances in detector capabilities result in an increasing amount of data collected at X-ray beamlines. Some of these data must be analyzed and reconstructed on demand to help execute experiments dynamically and modify them in real time. In turn, this requires a computing framework for real-time processing capable of moving data quickly from the detector to local or remote computing resources, processing data, and returning results to users. In this paper, we discuss the streaming framework built on top of PvaPy, a Python API for the EPICS pvAccess protocol. We describe the framework architecture and capabilities, and discuss scientific use cases and applications that benefit from streaming workflows implemented on top of this framework. We also illustrate the framework's performance in terms of achievable data-processing rates for various detector image sizes.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\"32 Pt 3\",\"pages\":\"823-836\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577525002115\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525002115","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用户设施升级、新的测量技术、数据分析算法的进步以及探测器能力的进步导致在x射线束线上收集的数据量不断增加。其中一些数据必须根据需要进行分析和重构,以帮助动态执行实验并实时修改它们。反过来,这需要一个实时处理的计算框架,能够将数据从检测器快速移动到本地或远程计算资源、处理数据并将结果返回给用户。在本文中,我们讨论了建立在PvaPy (EPICS pvAccess协议的Python API)之上的流框架。我们描述了框架的体系结构和功能,并讨论了科学的用例和应用程序,这些用例和应用程序受益于在该框架之上实现的流工作流。我们还说明了该框架的性能方面,可实现的数据处理速率为各种探测器的图像尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PvaPy streaming framework for real-time data processing.

User facility upgrades, new measurement techniques, advances in data analysis algorithms as well as advances in detector capabilities result in an increasing amount of data collected at X-ray beamlines. Some of these data must be analyzed and reconstructed on demand to help execute experiments dynamically and modify them in real time. In turn, this requires a computing framework for real-time processing capable of moving data quickly from the detector to local or remote computing resources, processing data, and returning results to users. In this paper, we discuss the streaming framework built on top of PvaPy, a Python API for the EPICS pvAccess protocol. We describe the framework architecture and capabilities, and discuss scientific use cases and applications that benefit from streaming workflows implemented on top of this framework. We also illustrate the framework's performance in terms of achievable data-processing rates for various detector image sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信