Alana R O Chin, Arthur Gessler, Paula Guzmán-Delgado, Rubén D Manzanedo, Matthias Saurer, Janneke Hille Ris Lambers
{"title":"针叶树树枝的雨水吸收:五个实验讲述了吸收、储存和运输的故事。","authors":"Alana R O Chin, Arthur Gessler, Paula Guzmán-Delgado, Rubén D Manzanedo, Matthias Saurer, Janneke Hille Ris Lambers","doi":"10.1093/jxb/eraf087","DOIUrl":null,"url":null,"abstract":"<p><p>While evidence supports the idea that a portion of the many raindrops that fall onto a forest canopy may be directly absorbed by the twigs they lands on, we do not know how much is absorbed, how it enters the twig, or what internal path it might take on its way to the xylem. Using a diverse series of 5 experiments encompassing isotopic labeling, fluorescent tracers, rehydration kinetics, synchrotron-based X-ray tomographic microscopy, and thermal imaging, we follow the fate of rainwater from initial contact with the twig to its distribution to adjacent tissues. We provide conclusive, multi-pronged evidence of surface water-absorption into the xylem of year-old conifer twigs with incomplete bark development. Additionally, we demonstrate a surface capillary phase, mixed apoplastic and symplastic internal routes, and the strong influence of intercellular airspace as a hydraulic capacitor across multiple tissues. We show that twigs are capable of rapid, large-volume water absorption which may help trees take advantage of crown-wetting events and support the repair of hydraulic damage from frost and drought. Forecasting the impacts of climatic stress on different tree species will benefit from understanding the importance, and tissue-level specifics, of this critical water-acquisition pathway. Our works tells a detailed story of rain absorption and lays a foundation for future trait-based research into among-species differences in absorption capacity.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainwater uptake in conifer twigs: Five experiments tell a story of absorption, storage, and transport.\",\"authors\":\"Alana R O Chin, Arthur Gessler, Paula Guzmán-Delgado, Rubén D Manzanedo, Matthias Saurer, Janneke Hille Ris Lambers\",\"doi\":\"10.1093/jxb/eraf087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While evidence supports the idea that a portion of the many raindrops that fall onto a forest canopy may be directly absorbed by the twigs they lands on, we do not know how much is absorbed, how it enters the twig, or what internal path it might take on its way to the xylem. Using a diverse series of 5 experiments encompassing isotopic labeling, fluorescent tracers, rehydration kinetics, synchrotron-based X-ray tomographic microscopy, and thermal imaging, we follow the fate of rainwater from initial contact with the twig to its distribution to adjacent tissues. We provide conclusive, multi-pronged evidence of surface water-absorption into the xylem of year-old conifer twigs with incomplete bark development. Additionally, we demonstrate a surface capillary phase, mixed apoplastic and symplastic internal routes, and the strong influence of intercellular airspace as a hydraulic capacitor across multiple tissues. We show that twigs are capable of rapid, large-volume water absorption which may help trees take advantage of crown-wetting events and support the repair of hydraulic damage from frost and drought. Forecasting the impacts of climatic stress on different tree species will benefit from understanding the importance, and tissue-level specifics, of this critical water-acquisition pathway. Our works tells a detailed story of rain absorption and lays a foundation for future trait-based research into among-species differences in absorption capacity.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf087\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf087","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Rainwater uptake in conifer twigs: Five experiments tell a story of absorption, storage, and transport.
While evidence supports the idea that a portion of the many raindrops that fall onto a forest canopy may be directly absorbed by the twigs they lands on, we do not know how much is absorbed, how it enters the twig, or what internal path it might take on its way to the xylem. Using a diverse series of 5 experiments encompassing isotopic labeling, fluorescent tracers, rehydration kinetics, synchrotron-based X-ray tomographic microscopy, and thermal imaging, we follow the fate of rainwater from initial contact with the twig to its distribution to adjacent tissues. We provide conclusive, multi-pronged evidence of surface water-absorption into the xylem of year-old conifer twigs with incomplete bark development. Additionally, we demonstrate a surface capillary phase, mixed apoplastic and symplastic internal routes, and the strong influence of intercellular airspace as a hydraulic capacitor across multiple tissues. We show that twigs are capable of rapid, large-volume water absorption which may help trees take advantage of crown-wetting events and support the repair of hydraulic damage from frost and drought. Forecasting the impacts of climatic stress on different tree species will benefit from understanding the importance, and tissue-level specifics, of this critical water-acquisition pathway. Our works tells a detailed story of rain absorption and lays a foundation for future trait-based research into among-species differences in absorption capacity.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.