Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang
{"title":"探索鸽子的价值学习:基底节区双通路与突触可塑性的作用。","authors":"Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang","doi":"10.1242/jeb.249507","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring value learning in pigeons: the role of dual pathways in the basal ganglia and synaptic plasticity.\",\"authors\":\"Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang\",\"doi\":\"10.1242/jeb.249507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249507\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249507","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Exploring value learning in pigeons: the role of dual pathways in the basal ganglia and synaptic plasticity.
Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.