探索鸽子的价值学习:基底节区双通路与突触可塑性的作用。

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-05-01 Epub Date: 2025-05-15 DOI:10.1242/jeb.249507
Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang
{"title":"探索鸽子的价值学习:基底节区双通路与突触可塑性的作用。","authors":"Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang","doi":"10.1242/jeb.249507","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring value learning in pigeons: the role of dual pathways in the basal ganglia and synaptic plasticity.\",\"authors\":\"Fuli Jin, Mengmeng Li, Long Yang, Lifang Yang, Zhigang Shang\",\"doi\":\"10.1242/jeb.249507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249507\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249507","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

理解动物的价值学习是认知神经科学研究的重点。目前研究中使用的模型通常都很简单,虽然已经提出了更复杂的模型,但仍不清楚哪些假设与动物的实际价值学习策略相一致。本研究通过自由选择任务研究了鸽子价值学习背后的计算机制。基于基底节区双通路和突触可塑性在数值计算中的作用的不同假设,构建了3个模型,并进行了模型比较和神经相关性分析。在测试的三个模型中,带有Hebbian规则的双路径强化学习模型与鸽子的行为最接近。此外,纹状体伽马带连通性与该模型估计的值具有最高的相关性。此外,针刺草β带连通性的增强支持了价值学习。这项研究为非人类动物的强化学习机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring value learning in pigeons: the role of dual pathways in the basal ganglia and synaptic plasticity.

Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value-learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways and synaptic plasticity in value computation, followed by model comparison and neural correlation analysis. Among the three models tested, the dual-pathway reinforcement learning model with Hebbian rules most closely matched the pigeons' behavior. Furthermore, the striatal gamma band connectivity showed the highest correlation with the values estimated by this model. Additionally, enhanced beta band connectivity in the nidopallium caudolaterale supported value learning. This study provides valuable insights into reinforcement learning mechanisms in non-human animals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信