人工智能:在药物警戒信号管理中的应用。

IF 3.1 Q2 PHARMACOLOGY & PHARMACY
Pharmaceutical Medicine Pub Date : 2025-05-01 Epub Date: 2025-04-21 DOI:10.1007/s40290-025-00561-2
Jeffrey Warner, Anaclara Prada Jardim, Claudia Albera
{"title":"人工智能:在药物警戒信号管理中的应用。","authors":"Jeffrey Warner, Anaclara Prada Jardim, Claudia Albera","doi":"10.1007/s40290-025-00561-2","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacovigilance is the science of collection, detection, and assessment of adverse events associated with pharmaceutical products for the ongoing monitoring and understanding of those products' safety profiles. Part of this process, signal management, encompasses the activities of signal detection, signal validation/confirmation, signal evaluation, and ultimately, final assessment as to whether a safety signal constitutes a new causal adverse drug reaction. Artificial intelligence is a group of technologies including machine learning and natural language processing that are revolutionizing multiple industries through intelligent automation. Here, we present a critical evaluation of studies leveraging artificial intelligence in signal management to characterize the benefits and limitations of the technology, the level of transparency, and our perspective on best practices for the future. To this end, PubMed and Embase were searched cumulatively for terms pertaining to signal management and artificial intelligence, machine learning, or natural language processing. Information pertaining to the artificial intelligence model used, hyperparameter settings, training/testing data, performance, feature analysis, and more was extracted from included articles. Common signal detection methods included k-means, random forest, and gradient boosting machine. Machine learning algorithms generally outperformed traditional frequentist or Bayesian measures of disproportionality per various metrics, showing the potential utility of advanced machine learning technologies in signal detection. In signal validation and evaluation, natural language processing was typically applied. Overall, methodological transparency was mixed and only some studies leveraged \"gold standard\" publicly available positive and negative control datasets. Overall, innovation in pharmacovigilance signal management is being driven by machine learning and natural language processing models, particularly in signal detection, in part because of high-performing bagging methods such as random forest and gradient boosting machine. These technologies may be well poised to accelerate progress in this field when used transparently and ethically. Future research is needed to assess the applicability of these techniques across various therapeutic areas and drug classes in the broader pharmaceutical industry.</p>","PeriodicalId":19778,"journal":{"name":"Pharmaceutical Medicine","volume":" ","pages":"183-198"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence: Applications in Pharmacovigilance Signal Management.\",\"authors\":\"Jeffrey Warner, Anaclara Prada Jardim, Claudia Albera\",\"doi\":\"10.1007/s40290-025-00561-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacovigilance is the science of collection, detection, and assessment of adverse events associated with pharmaceutical products for the ongoing monitoring and understanding of those products' safety profiles. Part of this process, signal management, encompasses the activities of signal detection, signal validation/confirmation, signal evaluation, and ultimately, final assessment as to whether a safety signal constitutes a new causal adverse drug reaction. Artificial intelligence is a group of technologies including machine learning and natural language processing that are revolutionizing multiple industries through intelligent automation. Here, we present a critical evaluation of studies leveraging artificial intelligence in signal management to characterize the benefits and limitations of the technology, the level of transparency, and our perspective on best practices for the future. To this end, PubMed and Embase were searched cumulatively for terms pertaining to signal management and artificial intelligence, machine learning, or natural language processing. Information pertaining to the artificial intelligence model used, hyperparameter settings, training/testing data, performance, feature analysis, and more was extracted from included articles. Common signal detection methods included k-means, random forest, and gradient boosting machine. Machine learning algorithms generally outperformed traditional frequentist or Bayesian measures of disproportionality per various metrics, showing the potential utility of advanced machine learning technologies in signal detection. In signal validation and evaluation, natural language processing was typically applied. Overall, methodological transparency was mixed and only some studies leveraged \\\"gold standard\\\" publicly available positive and negative control datasets. Overall, innovation in pharmacovigilance signal management is being driven by machine learning and natural language processing models, particularly in signal detection, in part because of high-performing bagging methods such as random forest and gradient boosting machine. These technologies may be well poised to accelerate progress in this field when used transparently and ethically. Future research is needed to assess the applicability of these techniques across various therapeutic areas and drug classes in the broader pharmaceutical industry.</p>\",\"PeriodicalId\":19778,\"journal\":{\"name\":\"Pharmaceutical Medicine\",\"volume\":\" \",\"pages\":\"183-198\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40290-025-00561-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40290-025-00561-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

药物警戒是收集、检测和评估与药品相关的不良事件的科学,目的是持续监测和了解这些产品的安全性。信号管理是这一过程的一部分,包括信号检测、信号验证/确认、信号评估,以及最终评估安全信号是否构成新的因果药物不良反应。人工智能是一组技术,包括机器学习和自然语言处理,通过智能自动化革新多个行业。在这里,我们对利用人工智能进行信号管理的研究进行了批判性评估,以描述该技术的优点和局限性、透明度水平以及我们对未来最佳实践的看法。为此,在PubMed和Embase中累积搜索有关信号管理和人工智能、机器学习或自然语言处理的术语。从纳入的文章中提取有关所使用的人工智能模型、超参数设置、训练/测试数据、性能、特征分析等信息。常用的信号检测方法包括k-means、随机森林和梯度增强机。机器学习算法通常优于传统的频率论或贝叶斯方法,显示了先进的机器学习技术在信号检测中的潜在效用。在信号验证和评估中,自然语言处理是典型的应用。总体而言,方法透明度参差不齐,只有一些研究利用了“黄金标准”公开可用的正面和负面对照数据集。总的来说,药物警戒信号管理的创新是由机器学习和自然语言处理模型驱动的,特别是在信号检测方面,部分原因是随机森林和梯度增强机等高性能装袋方法。如果使用透明和合乎道德,这些技术可能会加速这一领域的进展。未来的研究需要评估这些技术在各种治疗领域和更广泛的制药工业中药物类别的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence: Applications in Pharmacovigilance Signal Management.

Pharmacovigilance is the science of collection, detection, and assessment of adverse events associated with pharmaceutical products for the ongoing monitoring and understanding of those products' safety profiles. Part of this process, signal management, encompasses the activities of signal detection, signal validation/confirmation, signal evaluation, and ultimately, final assessment as to whether a safety signal constitutes a new causal adverse drug reaction. Artificial intelligence is a group of technologies including machine learning and natural language processing that are revolutionizing multiple industries through intelligent automation. Here, we present a critical evaluation of studies leveraging artificial intelligence in signal management to characterize the benefits and limitations of the technology, the level of transparency, and our perspective on best practices for the future. To this end, PubMed and Embase were searched cumulatively for terms pertaining to signal management and artificial intelligence, machine learning, or natural language processing. Information pertaining to the artificial intelligence model used, hyperparameter settings, training/testing data, performance, feature analysis, and more was extracted from included articles. Common signal detection methods included k-means, random forest, and gradient boosting machine. Machine learning algorithms generally outperformed traditional frequentist or Bayesian measures of disproportionality per various metrics, showing the potential utility of advanced machine learning technologies in signal detection. In signal validation and evaluation, natural language processing was typically applied. Overall, methodological transparency was mixed and only some studies leveraged "gold standard" publicly available positive and negative control datasets. Overall, innovation in pharmacovigilance signal management is being driven by machine learning and natural language processing models, particularly in signal detection, in part because of high-performing bagging methods such as random forest and gradient boosting machine. These technologies may be well poised to accelerate progress in this field when used transparently and ethically. Future research is needed to assess the applicability of these techniques across various therapeutic areas and drug classes in the broader pharmaceutical industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Medicine
Pharmaceutical Medicine PHARMACOLOGY & PHARMACY-
CiteScore
5.10
自引率
4.00%
发文量
36
期刊介绍: Pharmaceutical Medicine is a specialist discipline concerned with medical aspects of the discovery, development, evaluation, registration, regulation, monitoring, marketing, distribution and pricing of medicines, drug-device and drug-diagnostic combinations. The Journal disseminates information to support the community of professionals working in these highly inter-related functions. Key areas include translational medicine, clinical trial design, pharmacovigilance, clinical toxicology, drug regulation, clinical pharmacology, biostatistics and pharmacoeconomics. The Journal includes:Overviews of contentious or emerging issues.Comprehensive narrative reviews that provide an authoritative source of information on topical issues.Systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by PRISMA statement.Original research articles reporting the results of well-designed studies with a strong link to wider areas of clinical research.Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pharmaceutical Medicine may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.All manuscripts are subject to peer review by international experts. Letters to the Editor are welcomed and will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信