用AI设计个性化的多模态助记器:医学生的实现教程。

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Noor Elabd, Zafirah Muhammad Rahman, Salma Ibrahim Abu Alinnin, Samiyah Jahan, Luciana Aparecida Campos, Ovidiu Constantin Baltatu
{"title":"用AI设计个性化的多模态助记器:医学生的实现教程。","authors":"Noor Elabd, Zafirah Muhammad Rahman, Salma Ibrahim Abu Alinnin, Samiyah Jahan, Luciana Aparecida Campos, Ovidiu Constantin Baltatu","doi":"10.2196/67926","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical education can be challenging for students as they must manage vast amounts of complex information. Traditional mnemonic resources often follow a standardized approach, which may not accommodate diverse learning styles.</p><p><strong>Objective: </strong>This tutorial presents a student-developed approach to creating personalized multimodal mnemonics (PMMs) using artifical intelligence tools.</p><p><strong>Methods: </strong>This tutorial demonstrates a structured implementation process using ChatGPT (GPT-4 model) for text mnemonic generation and DALL-E 3 for visual mnemonic creation. We detail the prompt engineering framework, including zero-shot, few-shot, and chain-of-thought prompting techniques. The process involves (1) template development, (2) refinement, (3) personalization, (4) mnemonic specification, and (5) quality control. The implementation time typically ranges from 2 to 5 minutes per concept, with 1 to 3 iterations needed for optimal results.</p><p><strong>Results: </strong>Through systematic testing across 6 medical concepts, the implementation process achieved an initial success rate of 85%, improving to 95% after refinement. Key challenges included maintaining medical accuracy (addressed through specific terminology in prompts), ensuring visual clarity (improved through anatomical detail specifications), and achieving integration of text and visuals (resolved through structured review protocols). This tutorial provides practical templates, troubleshooting strategies, and quality control measures to address common implementation challenges.</p><p><strong>Conclusions: </strong>This tutorial offers medical students a practical framework for creating personalized learning tools using artificial intelligence. By following the detailed prompt engineering process and quality control measures, students can efficiently generate customized mnemonics while avoiding common pitfalls. The approach emphasizes human oversight and iterative refinement to ensure medical accuracy and educational value. The elimination of the need for developing separate databases of mnemonics streamlines the learning process.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"11 ","pages":"e67926"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing Personalized Multimodal Mnemonics With AI: A Medical Student's Implementation Tutorial.\",\"authors\":\"Noor Elabd, Zafirah Muhammad Rahman, Salma Ibrahim Abu Alinnin, Samiyah Jahan, Luciana Aparecida Campos, Ovidiu Constantin Baltatu\",\"doi\":\"10.2196/67926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical education can be challenging for students as they must manage vast amounts of complex information. Traditional mnemonic resources often follow a standardized approach, which may not accommodate diverse learning styles.</p><p><strong>Objective: </strong>This tutorial presents a student-developed approach to creating personalized multimodal mnemonics (PMMs) using artifical intelligence tools.</p><p><strong>Methods: </strong>This tutorial demonstrates a structured implementation process using ChatGPT (GPT-4 model) for text mnemonic generation and DALL-E 3 for visual mnemonic creation. We detail the prompt engineering framework, including zero-shot, few-shot, and chain-of-thought prompting techniques. The process involves (1) template development, (2) refinement, (3) personalization, (4) mnemonic specification, and (5) quality control. The implementation time typically ranges from 2 to 5 minutes per concept, with 1 to 3 iterations needed for optimal results.</p><p><strong>Results: </strong>Through systematic testing across 6 medical concepts, the implementation process achieved an initial success rate of 85%, improving to 95% after refinement. Key challenges included maintaining medical accuracy (addressed through specific terminology in prompts), ensuring visual clarity (improved through anatomical detail specifications), and achieving integration of text and visuals (resolved through structured review protocols). This tutorial provides practical templates, troubleshooting strategies, and quality control measures to address common implementation challenges.</p><p><strong>Conclusions: </strong>This tutorial offers medical students a practical framework for creating personalized learning tools using artificial intelligence. By following the detailed prompt engineering process and quality control measures, students can efficiently generate customized mnemonics while avoiding common pitfalls. The approach emphasizes human oversight and iterative refinement to ensure medical accuracy and educational value. The elimination of the need for developing separate databases of mnemonics streamlines the learning process.</p>\",\"PeriodicalId\":36236,\"journal\":{\"name\":\"JMIR Medical Education\",\"volume\":\"11 \",\"pages\":\"e67926\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/67926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

背景:医学教育对学生来说是具有挑战性的,因为他们必须管理大量复杂的信息。传统的助记资源通常遵循标准化的方法,这可能无法适应不同的学习方式。目的:本教程介绍了一种使用人工智能工具创建个性化多模态助记符(pms)的学生开发方法。方法:本教程演示了使用ChatGPT (GPT-4模型)生成文本助记符和使用dall - e3创建视觉助记符的结构化实现过程。我们详细介绍了提示工程框架,包括零提示、少提示和思维链提示技术。这个过程包括(1)模板开发,(2)细化,(3)个性化,(4)助记符规范,以及(5)质量控制。每个概念的实现时间通常在2到5分钟之间,需要1到3次迭代才能获得最佳结果。结果:通过6个医学概念的系统测试,实施过程的初始成功率为85%,细化后提高到95%。主要挑战包括保持医学准确性(通过提示中的特定术语解决),确保视觉清晰度(通过解剖细节规范改进),以及实现文本和视觉的集成(通过结构化审查协议解决)。本教程提供实用的模板、故障排除策略和质量控制措施,以解决常见的实现挑战。结论:本教程为医学生提供了一个使用人工智能创建个性化学习工具的实用框架。通过遵循详细及时的工程流程和质量控制措施,学生可以有效地生成定制的助记符,同时避免常见的缺陷。该方法强调人为监督和迭代改进,以确保医疗准确性和教育价值。无需开发单独的助记符数据库,简化了学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Personalized Multimodal Mnemonics With AI: A Medical Student's Implementation Tutorial.

Background: Medical education can be challenging for students as they must manage vast amounts of complex information. Traditional mnemonic resources often follow a standardized approach, which may not accommodate diverse learning styles.

Objective: This tutorial presents a student-developed approach to creating personalized multimodal mnemonics (PMMs) using artifical intelligence tools.

Methods: This tutorial demonstrates a structured implementation process using ChatGPT (GPT-4 model) for text mnemonic generation and DALL-E 3 for visual mnemonic creation. We detail the prompt engineering framework, including zero-shot, few-shot, and chain-of-thought prompting techniques. The process involves (1) template development, (2) refinement, (3) personalization, (4) mnemonic specification, and (5) quality control. The implementation time typically ranges from 2 to 5 minutes per concept, with 1 to 3 iterations needed for optimal results.

Results: Through systematic testing across 6 medical concepts, the implementation process achieved an initial success rate of 85%, improving to 95% after refinement. Key challenges included maintaining medical accuracy (addressed through specific terminology in prompts), ensuring visual clarity (improved through anatomical detail specifications), and achieving integration of text and visuals (resolved through structured review protocols). This tutorial provides practical templates, troubleshooting strategies, and quality control measures to address common implementation challenges.

Conclusions: This tutorial offers medical students a practical framework for creating personalized learning tools using artificial intelligence. By following the detailed prompt engineering process and quality control measures, students can efficiently generate customized mnemonics while avoiding common pitfalls. The approach emphasizes human oversight and iterative refinement to ensure medical accuracy and educational value. The elimination of the need for developing separate databases of mnemonics streamlines the learning process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信