冷冻扫描电镜在血液学研究中的应用。

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Irina Davidovich, Carina Levin, Yeshayahu Talmon
{"title":"冷冻扫描电镜在血液学研究中的应用。","authors":"Irina Davidovich, Carina Levin, Yeshayahu Talmon","doi":"10.1111/jmi.13424","DOIUrl":null,"url":null,"abstract":"<p><p>Cryogenic scanning electron microscopy (cryo-SEM) is a powerful imaging technique used in cellular biology, providing high-resolution micrographs that show the complexity and dynamics of biological systems. The use of high-pressure freezing (HPF) for specimen fixation preserves cellular structures in their native, hydrated state, avoiding the artefacts introduced by conventional chemical fixation, while modern microscopes provide high-resolution imaging at low electron acceleration voltage, giving fine structural details. That makes cryo-SEM a unique tool for understanding cellular complexity. However, operating the SEM at cryogenic conditions requires careful optimisation of working parameters to avoid artefacts. In our work, we explore the potential of cryo-SEM for haematology and general cell studies. We discuss the impact of a combination of different signals and work distance on specimen appearance and present examples of studies on healthy human blood cells under physiological conditions. Our findings illustrate the breadth of information that can be obtained from these data, highlighting the technique's capacity to enhance our understanding of cellular biology.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryo-SEM in haematological research.\",\"authors\":\"Irina Davidovich, Carina Levin, Yeshayahu Talmon\",\"doi\":\"10.1111/jmi.13424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cryogenic scanning electron microscopy (cryo-SEM) is a powerful imaging technique used in cellular biology, providing high-resolution micrographs that show the complexity and dynamics of biological systems. The use of high-pressure freezing (HPF) for specimen fixation preserves cellular structures in their native, hydrated state, avoiding the artefacts introduced by conventional chemical fixation, while modern microscopes provide high-resolution imaging at low electron acceleration voltage, giving fine structural details. That makes cryo-SEM a unique tool for understanding cellular complexity. However, operating the SEM at cryogenic conditions requires careful optimisation of working parameters to avoid artefacts. In our work, we explore the potential of cryo-SEM for haematology and general cell studies. We discuss the impact of a combination of different signals and work distance on specimen appearance and present examples of studies on healthy human blood cells under physiological conditions. Our findings illustrate the breadth of information that can be obtained from these data, highlighting the technique's capacity to enhance our understanding of cellular biology.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13424\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13424","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

低温扫描电子显微镜(cryo-SEM)是一种强大的成像技术,用于细胞生物学,提供高分辨率的显微照片,显示生物系统的复杂性和动态。使用高压冷冻(HPF)进行标本固定可以保持细胞结构的天然水合状态,避免了传统化学固定带来的人工制品,而现代显微镜在低电子加速电压下提供高分辨率成像,提供精细的结构细节。这使得低温扫描电镜成为了解细胞复杂性的独特工具。然而,在低温条件下操作扫描电镜需要仔细优化工作参数,以避免人工制品。在我们的工作中,我们探索冷冻扫描电镜在血液学和一般细胞研究中的潜力。我们讨论了不同信号和工作距离的组合对标本外观的影响,并提出了生理条件下健康人类血细胞的研究实例。我们的发现说明了可以从这些数据中获得的信息的广度,突出了该技术增强我们对细胞生物学理解的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryo-SEM in haematological research.

Cryogenic scanning electron microscopy (cryo-SEM) is a powerful imaging technique used in cellular biology, providing high-resolution micrographs that show the complexity and dynamics of biological systems. The use of high-pressure freezing (HPF) for specimen fixation preserves cellular structures in their native, hydrated state, avoiding the artefacts introduced by conventional chemical fixation, while modern microscopes provide high-resolution imaging at low electron acceleration voltage, giving fine structural details. That makes cryo-SEM a unique tool for understanding cellular complexity. However, operating the SEM at cryogenic conditions requires careful optimisation of working parameters to avoid artefacts. In our work, we explore the potential of cryo-SEM for haematology and general cell studies. We discuss the impact of a combination of different signals and work distance on specimen appearance and present examples of studies on healthy human blood cells under physiological conditions. Our findings illustrate the breadth of information that can be obtained from these data, highlighting the technique's capacity to enhance our understanding of cellular biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信