{"title":"万古霉素和艰难梭菌对无害梭菌分泌组和致病性的影响。","authors":"Yi-Ywan M Chen, Kun-Yi Chien, Hui-Ru Shieh, Cai-Jie Luo, Yu-Xun Chang, Chuan Chiang-Ni, Chih-Ho Lai, Cheng-Hsun Chiu","doi":"10.1007/s00430-025-00831-5","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridium innocuum, a member of the human gut microbiome with intrinsic resistance to vancomycin, has been increasingly associated with inflammatory bowel diseases (IBD). Clinical observations indicate that co-infection with Clostridioides difficile and C. innocuum could lead to poorer clinical remission in ulcerative colitis; however, the pathogenic mechanism of C. innocuum remains unclear. Here, we investigated the effects of vancomycin and C. difficile on C. innocuum secretomes and the functions of the modified secretomes on C. innocuum pathogenicity. The results indicated that, compared to co-culturing with C. difficile, vancomycin was more effective in stimulating the secretion of proteins without a signal peptide, whereas C. difficile was better at promoting the secretion of classical secretory proteins. Based on these results, we further analyzed the effects of three abundant classical secretory proteins on C. innocuum virulence utilizing recombinant proteins. The results demonstrated that the NlpC/P60-containing protein (NlpC/P60) can enhance C. innocuum biofilm formation and adherence to HT-29 cells. Additionally, NlpC/P60, D-Ala-D-Ala carboxypeptidase, and a polysaccharide deacetylase were able to stimulate IL-8 production of HT-29 cells and TNF-α production of Raw264.7 macrophages. Additionally, recombinant NlpC/P60 and polysaccharide deacetylase exhibited cytotoxicity on Raw264.7 cells at 48 h. As the production of IL-8 and TNF-α is closely associated with IBD development, it is suggested that C. innocuum secretomes, under the influence of vancomycin or C. difficile, could contribute to IBD progression by enhancing inflammation and host-pathogen interactions.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"21"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of vancomycin and Clostridioides difficile on the secretome and pathogenicity of Clostridium innocuum.\",\"authors\":\"Yi-Ywan M Chen, Kun-Yi Chien, Hui-Ru Shieh, Cai-Jie Luo, Yu-Xun Chang, Chuan Chiang-Ni, Chih-Ho Lai, Cheng-Hsun Chiu\",\"doi\":\"10.1007/s00430-025-00831-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clostridium innocuum, a member of the human gut microbiome with intrinsic resistance to vancomycin, has been increasingly associated with inflammatory bowel diseases (IBD). Clinical observations indicate that co-infection with Clostridioides difficile and C. innocuum could lead to poorer clinical remission in ulcerative colitis; however, the pathogenic mechanism of C. innocuum remains unclear. Here, we investigated the effects of vancomycin and C. difficile on C. innocuum secretomes and the functions of the modified secretomes on C. innocuum pathogenicity. The results indicated that, compared to co-culturing with C. difficile, vancomycin was more effective in stimulating the secretion of proteins without a signal peptide, whereas C. difficile was better at promoting the secretion of classical secretory proteins. Based on these results, we further analyzed the effects of three abundant classical secretory proteins on C. innocuum virulence utilizing recombinant proteins. The results demonstrated that the NlpC/P60-containing protein (NlpC/P60) can enhance C. innocuum biofilm formation and adherence to HT-29 cells. Additionally, NlpC/P60, D-Ala-D-Ala carboxypeptidase, and a polysaccharide deacetylase were able to stimulate IL-8 production of HT-29 cells and TNF-α production of Raw264.7 macrophages. Additionally, recombinant NlpC/P60 and polysaccharide deacetylase exhibited cytotoxicity on Raw264.7 cells at 48 h. As the production of IL-8 and TNF-α is closely associated with IBD development, it is suggested that C. innocuum secretomes, under the influence of vancomycin or C. difficile, could contribute to IBD progression by enhancing inflammation and host-pathogen interactions.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"214 1\",\"pages\":\"21\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-025-00831-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-025-00831-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Impact of vancomycin and Clostridioides difficile on the secretome and pathogenicity of Clostridium innocuum.
Clostridium innocuum, a member of the human gut microbiome with intrinsic resistance to vancomycin, has been increasingly associated with inflammatory bowel diseases (IBD). Clinical observations indicate that co-infection with Clostridioides difficile and C. innocuum could lead to poorer clinical remission in ulcerative colitis; however, the pathogenic mechanism of C. innocuum remains unclear. Here, we investigated the effects of vancomycin and C. difficile on C. innocuum secretomes and the functions of the modified secretomes on C. innocuum pathogenicity. The results indicated that, compared to co-culturing with C. difficile, vancomycin was more effective in stimulating the secretion of proteins without a signal peptide, whereas C. difficile was better at promoting the secretion of classical secretory proteins. Based on these results, we further analyzed the effects of three abundant classical secretory proteins on C. innocuum virulence utilizing recombinant proteins. The results demonstrated that the NlpC/P60-containing protein (NlpC/P60) can enhance C. innocuum biofilm formation and adherence to HT-29 cells. Additionally, NlpC/P60, D-Ala-D-Ala carboxypeptidase, and a polysaccharide deacetylase were able to stimulate IL-8 production of HT-29 cells and TNF-α production of Raw264.7 macrophages. Additionally, recombinant NlpC/P60 and polysaccharide deacetylase exhibited cytotoxicity on Raw264.7 cells at 48 h. As the production of IL-8 and TNF-α is closely associated with IBD development, it is suggested that C. innocuum secretomes, under the influence of vancomycin or C. difficile, could contribute to IBD progression by enhancing inflammation and host-pathogen interactions.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.