Victoria Zaborova, Elena Budanova, Kira Kryuchkova, Vitaly Rybakov, Dmitry Shestakov, Aleksey Isaikin, Dmitry Romanov, Maxim Churyukanov, Natalia Vakhnina, Vladimir Zakharov, Ivan Isaikin, Marina Kinkulkina
{"title":"一氧化氮:健康和病变皮肤中的一种气体传递器。","authors":"Victoria Zaborova, Elena Budanova, Kira Kryuchkova, Vitaly Rybakov, Dmitry Shestakov, Aleksey Isaikin, Dmitry Romanov, Maxim Churyukanov, Natalia Vakhnina, Vladimir Zakharov, Ivan Isaikin, Marina Kinkulkina","doi":"10.4103/mgr.MEDGASRES-D-24-00144","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous physiological processes in the human skin are mediated by nitric oxide, a gaseous signalling molecule. Almost every type of skin cell may produce nitric oxide, it is possible to generate nitric oxide without the need of enzymes. Nitric oxide plays a crucial role in regulating apoptosis, keratinocyte differentiation and proliferation, the protective properties of the epidermal barrier, and the structure and functions of the microcirculatory bed. Nitric oxide is involved in immunological and inflammatory responses, hair growth regulation, and wound healing processes. It mediates ultraviolet-induced processes such as erythema and edema development and participates in melanogenesis. Furthermore, the ability of nitric oxide to bind reactive oxygen species and prevent lipid peroxidation gives it antioxidant qualities. This coordinated action of nitric oxide on gene expression and membrane integrity effectively protects cells from ultraviolet A-induced apoptosis and necrosis. Furthermore, nitric oxide can be considered as a molecule that inhibits the development of cancer and photoaging. It directly harms microorganisms and indirectly activates the immune system, exhibiting antibacterial, antiviral, and antifungal qualities. Notably, nitric oxide is effective against antibiotics-resistant bacteria. All of the aforementioned findings suggest that nitric oxide is a gaseous mediator that can protect skin function.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"15 4","pages":"520-528"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitric oxide: a gas transmitter in healthy and diseased skin.\",\"authors\":\"Victoria Zaborova, Elena Budanova, Kira Kryuchkova, Vitaly Rybakov, Dmitry Shestakov, Aleksey Isaikin, Dmitry Romanov, Maxim Churyukanov, Natalia Vakhnina, Vladimir Zakharov, Ivan Isaikin, Marina Kinkulkina\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous physiological processes in the human skin are mediated by nitric oxide, a gaseous signalling molecule. Almost every type of skin cell may produce nitric oxide, it is possible to generate nitric oxide without the need of enzymes. Nitric oxide plays a crucial role in regulating apoptosis, keratinocyte differentiation and proliferation, the protective properties of the epidermal barrier, and the structure and functions of the microcirculatory bed. Nitric oxide is involved in immunological and inflammatory responses, hair growth regulation, and wound healing processes. It mediates ultraviolet-induced processes such as erythema and edema development and participates in melanogenesis. Furthermore, the ability of nitric oxide to bind reactive oxygen species and prevent lipid peroxidation gives it antioxidant qualities. This coordinated action of nitric oxide on gene expression and membrane integrity effectively protects cells from ultraviolet A-induced apoptosis and necrosis. Furthermore, nitric oxide can be considered as a molecule that inhibits the development of cancer and photoaging. It directly harms microorganisms and indirectly activates the immune system, exhibiting antibacterial, antiviral, and antifungal qualities. Notably, nitric oxide is effective against antibiotics-resistant bacteria. All of the aforementioned findings suggest that nitric oxide is a gaseous mediator that can protect skin function.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\"15 4\",\"pages\":\"520-528\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Nitric oxide: a gas transmitter in healthy and diseased skin.
Numerous physiological processes in the human skin are mediated by nitric oxide, a gaseous signalling molecule. Almost every type of skin cell may produce nitric oxide, it is possible to generate nitric oxide without the need of enzymes. Nitric oxide plays a crucial role in regulating apoptosis, keratinocyte differentiation and proliferation, the protective properties of the epidermal barrier, and the structure and functions of the microcirculatory bed. Nitric oxide is involved in immunological and inflammatory responses, hair growth regulation, and wound healing processes. It mediates ultraviolet-induced processes such as erythema and edema development and participates in melanogenesis. Furthermore, the ability of nitric oxide to bind reactive oxygen species and prevent lipid peroxidation gives it antioxidant qualities. This coordinated action of nitric oxide on gene expression and membrane integrity effectively protects cells from ultraviolet A-induced apoptosis and necrosis. Furthermore, nitric oxide can be considered as a molecule that inhibits the development of cancer and photoaging. It directly harms microorganisms and indirectly activates the immune system, exhibiting antibacterial, antiviral, and antifungal qualities. Notably, nitric oxide is effective against antibiotics-resistant bacteria. All of the aforementioned findings suggest that nitric oxide is a gaseous mediator that can protect skin function.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.