{"title":"贝氏副伞衍生的类胡萝卜素通过调节树突状细胞中的促炎细胞因子,改善银屑病样小鼠模型的炎症。","authors":"Yuya Nakashima , Kazuhito Gotoh , Mikako Yagi , Soichi Mizuguchi , Dongchon Kang , Toshihiro Kanno , Takeshi Uchiumi","doi":"10.1016/j.jnutbio.2025.109922","DOIUrl":null,"url":null,"abstract":"<div><div>Psoriasis is one of the most common chronic inflammatory skin diseases. Many studies suggest that dendritic cells (DCs) and the T cell-mediated interleukin (IL)-23/IL-17 axis play a central role in the signaling pathway in the pathogenesis of psoriasis. <em>Chlorella</em>, also known as <em>Parachlorella beijerinckii</em> (PB), is a unicellular green alga that has long been used as a health food. It contains carotenoids that have antioxidant and anti-inflammatory effects. In this study, we investigated whether PB-derived carotenoids (PBCs) ameliorated inflammatory processes in an imiquimod (IMQ)-induced psoriasis-like mouse model and bone marrow-derived dendritic cells (BMDCs). We found that PBCs attenuated erythema, thickness, scaling, and neutrophil infiltration in the skin tissue of the IMQ-induced psoriasis-like mice. Moreover, PBCs suppressed psoriasis-related pro-inflammatory cytokine expression, DC activation, and IL-17A production by γδ T cells in IMQ-induced psoriasis-like mice. In IMQ-induced BMDCs, PBCs suppressed the expression levels of pro-inflammatory cytokines, including IL-23; IL-1β; and IL-6; and CD40/CD86, a marker of DC activation. Additionally, PBCs inhibited the nuclear factor kappa B, p38, and c-Jun NH<sub>2</sub>-terminal kinase inflammatory signaling pathways and the mitochondrial reactive oxygen species (mitoROS)-triggered inflammasome activation pathway. PBCs also activated the extracellular regulated protein kinase/NF-E2-related factor-2 (ERK/Nrf2) pathway in BMDCs. Moreover, PBCs suppressed the harmful effects of pro-inflammatory cytokine gene expression and mitoROS and inflammasome activation via ERK/Nrf2 pathway activation in IMQ-induced BMDCs. In conclusion, PBCs may be beneficial in the management of psoriatic inflammation.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"143 ","pages":"Article 109922"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parachlorella beijerinckii-derived carotenoids ameliorate inflammation in a psoriasis-like mouse model via modulation of pro-inflammatory cytokines in dendritic cells\",\"authors\":\"Yuya Nakashima , Kazuhito Gotoh , Mikako Yagi , Soichi Mizuguchi , Dongchon Kang , Toshihiro Kanno , Takeshi Uchiumi\",\"doi\":\"10.1016/j.jnutbio.2025.109922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Psoriasis is one of the most common chronic inflammatory skin diseases. Many studies suggest that dendritic cells (DCs) and the T cell-mediated interleukin (IL)-23/IL-17 axis play a central role in the signaling pathway in the pathogenesis of psoriasis. <em>Chlorella</em>, also known as <em>Parachlorella beijerinckii</em> (PB), is a unicellular green alga that has long been used as a health food. It contains carotenoids that have antioxidant and anti-inflammatory effects. In this study, we investigated whether PB-derived carotenoids (PBCs) ameliorated inflammatory processes in an imiquimod (IMQ)-induced psoriasis-like mouse model and bone marrow-derived dendritic cells (BMDCs). We found that PBCs attenuated erythema, thickness, scaling, and neutrophil infiltration in the skin tissue of the IMQ-induced psoriasis-like mice. Moreover, PBCs suppressed psoriasis-related pro-inflammatory cytokine expression, DC activation, and IL-17A production by γδ T cells in IMQ-induced psoriasis-like mice. In IMQ-induced BMDCs, PBCs suppressed the expression levels of pro-inflammatory cytokines, including IL-23; IL-1β; and IL-6; and CD40/CD86, a marker of DC activation. Additionally, PBCs inhibited the nuclear factor kappa B, p38, and c-Jun NH<sub>2</sub>-terminal kinase inflammatory signaling pathways and the mitochondrial reactive oxygen species (mitoROS)-triggered inflammasome activation pathway. PBCs also activated the extracellular regulated protein kinase/NF-E2-related factor-2 (ERK/Nrf2) pathway in BMDCs. Moreover, PBCs suppressed the harmful effects of pro-inflammatory cytokine gene expression and mitoROS and inflammasome activation via ERK/Nrf2 pathway activation in IMQ-induced BMDCs. In conclusion, PBCs may be beneficial in the management of psoriatic inflammation.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"143 \",\"pages\":\"Article 109922\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325000853\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325000853","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Parachlorella beijerinckii-derived carotenoids ameliorate inflammation in a psoriasis-like mouse model via modulation of pro-inflammatory cytokines in dendritic cells
Psoriasis is one of the most common chronic inflammatory skin diseases. Many studies suggest that dendritic cells (DCs) and the T cell-mediated interleukin (IL)-23/IL-17 axis play a central role in the signaling pathway in the pathogenesis of psoriasis. Chlorella, also known as Parachlorella beijerinckii (PB), is a unicellular green alga that has long been used as a health food. It contains carotenoids that have antioxidant and anti-inflammatory effects. In this study, we investigated whether PB-derived carotenoids (PBCs) ameliorated inflammatory processes in an imiquimod (IMQ)-induced psoriasis-like mouse model and bone marrow-derived dendritic cells (BMDCs). We found that PBCs attenuated erythema, thickness, scaling, and neutrophil infiltration in the skin tissue of the IMQ-induced psoriasis-like mice. Moreover, PBCs suppressed psoriasis-related pro-inflammatory cytokine expression, DC activation, and IL-17A production by γδ T cells in IMQ-induced psoriasis-like mice. In IMQ-induced BMDCs, PBCs suppressed the expression levels of pro-inflammatory cytokines, including IL-23; IL-1β; and IL-6; and CD40/CD86, a marker of DC activation. Additionally, PBCs inhibited the nuclear factor kappa B, p38, and c-Jun NH2-terminal kinase inflammatory signaling pathways and the mitochondrial reactive oxygen species (mitoROS)-triggered inflammasome activation pathway. PBCs also activated the extracellular regulated protein kinase/NF-E2-related factor-2 (ERK/Nrf2) pathway in BMDCs. Moreover, PBCs suppressed the harmful effects of pro-inflammatory cytokine gene expression and mitoROS and inflammasome activation via ERK/Nrf2 pathway activation in IMQ-induced BMDCs. In conclusion, PBCs may be beneficial in the management of psoriatic inflammation.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.