Prabhakar Ramachandran, Darcie Anderson, Zachery Colbert, Daniel Arrington, Michael Huo, Mark B Pinkham, Matthew Foote, Andrew Fielding
{"title":"使用Pix2pix生成对抗网络增强伽玛刀锥束计算机断层扫描图像质量:一种深度学习方法。","authors":"Prabhakar Ramachandran, Darcie Anderson, Zachery Colbert, Daniel Arrington, Michael Huo, Mark B Pinkham, Matthew Foote, Andrew Fielding","doi":"10.4103/jmp.jmp_140_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The study aims to develop a modified Pix2Pix convolutional neural network framework to enhance the quality of cone-beam computed tomography (CBCT) images. It also seeks to reduce the Hounsfield unit (HU) variations, making CBCT images closely resemble the internal anatomy as depicted in computed tomography (CT) images.</p><p><strong>Materials and methods: </strong>We used datasets from 50 patients who underwent Gamma Knife treatment to develop a deep learning model that translates CBCT images into high-quality synthetic CT (sCT) images. Paired CBCT and ground truth CT images from 40 patients were used for training and 10 for testing on 7484 slices of 512 × 512 pixels with the Pix2Pix model. The sCT images were evaluated against ground truth CT scans using image quality assessment metrics, including the structural similarity index (SSIM), mean absolute error (MAE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), normalized cross-correlation, and dice similarity coefficient.</p><p><strong>Results: </strong>The results demonstrate significant improvements in image quality when comparing sCT images to CBCT, with SSIM increasing from 0.85 ± 0.05 to 0.95 ± 0.03 and MAE dropping from 77.37 ± 20.05 to 18.81 ± 7.22 (<i>p</i> < 0.0001 for both). PSNR and RMSE also improved, from 26.50 ± 1.72 to 30.76 ± 2.23 and 228.52 ± 53.76 to 82.30 ± 23.81, respectively (<i>p</i> < 0.0001).</p><p><strong>Conclusion: </strong>The sCT images show reduced noise and artifacts, closely matching CT in HU values, and demonstrate a high degree of similarity to CT images, highlighting the potential of deep learning to significantly improve CBCT image quality for radiosurgery applications.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"50 1","pages":"30-37"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Gamma Knife Cone-beam Computed Tomography Image Quality Using Pix2pix Generative Adversarial Networks: A Deep Learning Approach.\",\"authors\":\"Prabhakar Ramachandran, Darcie Anderson, Zachery Colbert, Daniel Arrington, Michael Huo, Mark B Pinkham, Matthew Foote, Andrew Fielding\",\"doi\":\"10.4103/jmp.jmp_140_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>The study aims to develop a modified Pix2Pix convolutional neural network framework to enhance the quality of cone-beam computed tomography (CBCT) images. It also seeks to reduce the Hounsfield unit (HU) variations, making CBCT images closely resemble the internal anatomy as depicted in computed tomography (CT) images.</p><p><strong>Materials and methods: </strong>We used datasets from 50 patients who underwent Gamma Knife treatment to develop a deep learning model that translates CBCT images into high-quality synthetic CT (sCT) images. Paired CBCT and ground truth CT images from 40 patients were used for training and 10 for testing on 7484 slices of 512 × 512 pixels with the Pix2Pix model. The sCT images were evaluated against ground truth CT scans using image quality assessment metrics, including the structural similarity index (SSIM), mean absolute error (MAE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), normalized cross-correlation, and dice similarity coefficient.</p><p><strong>Results: </strong>The results demonstrate significant improvements in image quality when comparing sCT images to CBCT, with SSIM increasing from 0.85 ± 0.05 to 0.95 ± 0.03 and MAE dropping from 77.37 ± 20.05 to 18.81 ± 7.22 (<i>p</i> < 0.0001 for both). PSNR and RMSE also improved, from 26.50 ± 1.72 to 30.76 ± 2.23 and 228.52 ± 53.76 to 82.30 ± 23.81, respectively (<i>p</i> < 0.0001).</p><p><strong>Conclusion: </strong>The sCT images show reduced noise and artifacts, closely matching CT in HU values, and demonstrate a high degree of similarity to CT images, highlighting the potential of deep learning to significantly improve CBCT image quality for radiosurgery applications.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"50 1\",\"pages\":\"30-37\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_140_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_140_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Enhancing Gamma Knife Cone-beam Computed Tomography Image Quality Using Pix2pix Generative Adversarial Networks: A Deep Learning Approach.
Aims: The study aims to develop a modified Pix2Pix convolutional neural network framework to enhance the quality of cone-beam computed tomography (CBCT) images. It also seeks to reduce the Hounsfield unit (HU) variations, making CBCT images closely resemble the internal anatomy as depicted in computed tomography (CT) images.
Materials and methods: We used datasets from 50 patients who underwent Gamma Knife treatment to develop a deep learning model that translates CBCT images into high-quality synthetic CT (sCT) images. Paired CBCT and ground truth CT images from 40 patients were used for training and 10 for testing on 7484 slices of 512 × 512 pixels with the Pix2Pix model. The sCT images were evaluated against ground truth CT scans using image quality assessment metrics, including the structural similarity index (SSIM), mean absolute error (MAE), root mean square error (RMSE), peak signal-to-noise ratio (PSNR), normalized cross-correlation, and dice similarity coefficient.
Results: The results demonstrate significant improvements in image quality when comparing sCT images to CBCT, with SSIM increasing from 0.85 ± 0.05 to 0.95 ± 0.03 and MAE dropping from 77.37 ± 20.05 to 18.81 ± 7.22 (p < 0.0001 for both). PSNR and RMSE also improved, from 26.50 ± 1.72 to 30.76 ± 2.23 and 228.52 ± 53.76 to 82.30 ± 23.81, respectively (p < 0.0001).
Conclusion: The sCT images show reduced noise and artifacts, closely matching CT in HU values, and demonstrate a high degree of similarity to CT images, highlighting the potential of deep learning to significantly improve CBCT image quality for radiosurgery applications.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.