{"title":"全球鉴定ag3 - rna相互作用揭示莱茵衣藻小rna介导的基因调控靶标","authors":"Suzuna Murakami, Hiroki Takahashi, Kaede Shimizu, Tomohito Yamasaki","doi":"10.1093/pcp/pcaf040","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) form complexes with Argonaute (AGO) proteins and bind to mRNAs with complementary sequences to repress their expression. Organisms typically possess several hundred miRNAs that regulate diverse aspects of biology. Although the roles of miRNAs have been elucidated in multicellular organisms, they remain largely unexplored in unicellular organisms. Identifying miRNA target genes remains challenging in the green alga Chlamydomonas (Chlamydomonas reinhardtii), the first unicellular organism in which miRNAs were discovered. Previous computational and sequencing-based approaches, such as miRNA-mRNA complementarity predictions, RNA-seq, and Ribo-seq, have struggled to identify Chlamydomonas miRNA targets. While similar technical difficulties exist in animals, crosslinking immunoprecipitation followed by sequencing has overcome these challenges. This method involves ultraviolet-mediated crosslinking of RNA-binding proteins (RBPs) to their target RNAs in living cells, followed by partial RNase digestion, immunopurification, and sequencing to map RBP-associated RNAs across the genome. Here, we performed high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) to generate a global AGO3-RNA interaction map. We identified 120 mRNAs derived from nuclear genes and two mRNAs derived from chloroplast genes. Expression levels of the nuclear gene CAS and chloroplast gene petA were higher in an ago3 mutant than in wild-type Chlamydomonas, suggesting that AGO3 represses the expression of the genes identified through HITS-CLIP analysis. Our study demonstrates that HITS-CLIP analysis is now feasible for any RBP in Chlamydomonas, offering new opportunities to uncover the functions of RBPs of interest.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":"940-955"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Global identification of AGO3-RNA interactions reveals targets of small RNA-mediated gene regulation in Chlamydomonas reinhardtii.\",\"authors\":\"Suzuna Murakami, Hiroki Takahashi, Kaede Shimizu, Tomohito Yamasaki\",\"doi\":\"10.1093/pcp/pcaf040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) form complexes with Argonaute (AGO) proteins and bind to mRNAs with complementary sequences to repress their expression. Organisms typically possess several hundred miRNAs that regulate diverse aspects of biology. Although the roles of miRNAs have been elucidated in multicellular organisms, they remain largely unexplored in unicellular organisms. Identifying miRNA target genes remains challenging in the green alga Chlamydomonas (Chlamydomonas reinhardtii), the first unicellular organism in which miRNAs were discovered. Previous computational and sequencing-based approaches, such as miRNA-mRNA complementarity predictions, RNA-seq, and Ribo-seq, have struggled to identify Chlamydomonas miRNA targets. While similar technical difficulties exist in animals, crosslinking immunoprecipitation followed by sequencing has overcome these challenges. This method involves ultraviolet-mediated crosslinking of RNA-binding proteins (RBPs) to their target RNAs in living cells, followed by partial RNase digestion, immunopurification, and sequencing to map RBP-associated RNAs across the genome. Here, we performed high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) to generate a global AGO3-RNA interaction map. We identified 120 mRNAs derived from nuclear genes and two mRNAs derived from chloroplast genes. Expression levels of the nuclear gene CAS and chloroplast gene petA were higher in an ago3 mutant than in wild-type Chlamydomonas, suggesting that AGO3 represses the expression of the genes identified through HITS-CLIP analysis. Our study demonstrates that HITS-CLIP analysis is now feasible for any RBP in Chlamydomonas, offering new opportunities to uncover the functions of RBPs of interest.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"940-955\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcaf040\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Global identification of AGO3-RNA interactions reveals targets of small RNA-mediated gene regulation in Chlamydomonas reinhardtii.
MicroRNAs (miRNAs) form complexes with Argonaute (AGO) proteins and bind to mRNAs with complementary sequences to repress their expression. Organisms typically possess several hundred miRNAs that regulate diverse aspects of biology. Although the roles of miRNAs have been elucidated in multicellular organisms, they remain largely unexplored in unicellular organisms. Identifying miRNA target genes remains challenging in the green alga Chlamydomonas (Chlamydomonas reinhardtii), the first unicellular organism in which miRNAs were discovered. Previous computational and sequencing-based approaches, such as miRNA-mRNA complementarity predictions, RNA-seq, and Ribo-seq, have struggled to identify Chlamydomonas miRNA targets. While similar technical difficulties exist in animals, crosslinking immunoprecipitation followed by sequencing has overcome these challenges. This method involves ultraviolet-mediated crosslinking of RNA-binding proteins (RBPs) to their target RNAs in living cells, followed by partial RNase digestion, immunopurification, and sequencing to map RBP-associated RNAs across the genome. Here, we performed high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) to generate a global AGO3-RNA interaction map. We identified 120 mRNAs derived from nuclear genes and two mRNAs derived from chloroplast genes. Expression levels of the nuclear gene CAS and chloroplast gene petA were higher in an ago3 mutant than in wild-type Chlamydomonas, suggesting that AGO3 represses the expression of the genes identified through HITS-CLIP analysis. Our study demonstrates that HITS-CLIP analysis is now feasible for any RBP in Chlamydomonas, offering new opportunities to uncover the functions of RBPs of interest.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.