{"title":"西南地区候鸟微生物群和病毒群动态。","authors":"Qingqing Luo, Hongyan Gao, Yujia Xiang, Jian Li, Lin Dong, Xingran Wang, Fangqing Liu, Yuhong Guo, Chao Shen, Qiang Ding, Chengfeng Qin, Guanxiang Liang, Longying Wen","doi":"10.1038/s41522-025-00703-z","DOIUrl":null,"url":null,"abstract":"<p><p>Migratory birds carry pathogens, posing a significant threat to environmental and human health. We documented the metatranscriptome and RNA virome of 896 stool samples from migratory birds and environmental samples over four consecutive years in southwest China. Our analysis identified Catellicoccus marimammalium as the predominant bacterium in the gut of black-headed gulls, with an average relative abundance of 79.3%. Strain-level analysis of C. marimammalium revealed a dominant population with some longitudinal diversity over the four years. Additionally, the gut of black-headed gulls was found to harbor numerous viruses, including a novel hepatovirus. Lysates of cells of C. marimammalium but not other bacteria derived from black-headed gulls could inhibit the replication of human hepatovirus, suggesting a potential regulatory role for gut commensal bacteria in modulating viral carriage. These findings enhance our understanding of the microbiome and RNA virome diversity in migratory birds and provide insights into the modulation of asymptomatic infections.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"64"},"PeriodicalIF":7.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018928/pdf/","citationCount":"0","resultStr":"{\"title\":\"The dynamics of microbiome and virome in migratory birds of southwest China.\",\"authors\":\"Qingqing Luo, Hongyan Gao, Yujia Xiang, Jian Li, Lin Dong, Xingran Wang, Fangqing Liu, Yuhong Guo, Chao Shen, Qiang Ding, Chengfeng Qin, Guanxiang Liang, Longying Wen\",\"doi\":\"10.1038/s41522-025-00703-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Migratory birds carry pathogens, posing a significant threat to environmental and human health. We documented the metatranscriptome and RNA virome of 896 stool samples from migratory birds and environmental samples over four consecutive years in southwest China. Our analysis identified Catellicoccus marimammalium as the predominant bacterium in the gut of black-headed gulls, with an average relative abundance of 79.3%. Strain-level analysis of C. marimammalium revealed a dominant population with some longitudinal diversity over the four years. Additionally, the gut of black-headed gulls was found to harbor numerous viruses, including a novel hepatovirus. Lysates of cells of C. marimammalium but not other bacteria derived from black-headed gulls could inhibit the replication of human hepatovirus, suggesting a potential regulatory role for gut commensal bacteria in modulating viral carriage. These findings enhance our understanding of the microbiome and RNA virome diversity in migratory birds and provide insights into the modulation of asymptomatic infections.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"64\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00703-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00703-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The dynamics of microbiome and virome in migratory birds of southwest China.
Migratory birds carry pathogens, posing a significant threat to environmental and human health. We documented the metatranscriptome and RNA virome of 896 stool samples from migratory birds and environmental samples over four consecutive years in southwest China. Our analysis identified Catellicoccus marimammalium as the predominant bacterium in the gut of black-headed gulls, with an average relative abundance of 79.3%. Strain-level analysis of C. marimammalium revealed a dominant population with some longitudinal diversity over the four years. Additionally, the gut of black-headed gulls was found to harbor numerous viruses, including a novel hepatovirus. Lysates of cells of C. marimammalium but not other bacteria derived from black-headed gulls could inhibit the replication of human hepatovirus, suggesting a potential regulatory role for gut commensal bacteria in modulating viral carriage. These findings enhance our understanding of the microbiome and RNA virome diversity in migratory birds and provide insights into the modulation of asymptomatic infections.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.