Salimeh Hassani, Keyvan Nedaei, Rahim Jafari, Ghasem Bagherpour
{"title":"紧密连接调节融合肽(ADT-6)通过Caco-2细胞系的细胞旁通路增强GFP蛋白的通透性:一项体外研究","authors":"Salimeh Hassani, Keyvan Nedaei, Rahim Jafari, Ghasem Bagherpour","doi":"10.61186/rbmb.13.3.349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The oral delivery of therapeutic peptides and proteins presents a significant challenge in pharmaceutical development due to barriers such as the intestinal epithelium and the blood-brain barrier (BBB). These barriers limit the passage of large, hydrophilic molecules through transcellular pathways and restrict paracellular transport due to intercellular tight junctions. This study investigates the potential of E- cadherin-modulating peptide, ADT-6, to improve the penetration of these therapeutic agents.</p><p><strong>Methods: </strong>We constructed a fusion protein of ADT-6 and green fluorescent protein (GFP) to evaluate its activity and transport through the epithelial cells' paracellular pathway. Using Escherichia coli strains for expression, we cloned the GFP-ADT-6 construct, which provides a solid foundation for our study's methodology.</p><p><strong>Results: </strong>Our molecular simulations showed that the linker between GFP and ADT-6 maintains the fusion protein's integrity and provides flexibility in receptor interaction. Permeability experiments revealed that ADT-6 markedly reduced transepithelial electrical resistance (TEER) and significantly increased GFP transfection in Caco-2 cell monolayers dose-dependently. Results of ELISA confirmed these findings, showing high GFP levels in the lower compartment of Transwell systems treated with GFP-ADT-6.</p><p><strong>Conclusions: </strong>This study demonstrates the potential of ADT-6 to deliver proteins from the paracellular route, enhance the bioavailability of pharmaceutical drugs by altering cell-cell interactions, and provide new opportunities for oral drug delivery strategies.</p>","PeriodicalId":45319,"journal":{"name":"Reports of Biochemistry and Molecular Biology","volume":"13 3","pages":"349-357"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050061/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tight Junction Modulatory Fusion Peptide (ADT-6) Enhances GFP Protein Permeability through the Paracellular Pathway in Caco-2 Cell Lines: An <i>In-Vitro</i> Study.\",\"authors\":\"Salimeh Hassani, Keyvan Nedaei, Rahim Jafari, Ghasem Bagherpour\",\"doi\":\"10.61186/rbmb.13.3.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The oral delivery of therapeutic peptides and proteins presents a significant challenge in pharmaceutical development due to barriers such as the intestinal epithelium and the blood-brain barrier (BBB). These barriers limit the passage of large, hydrophilic molecules through transcellular pathways and restrict paracellular transport due to intercellular tight junctions. This study investigates the potential of E- cadherin-modulating peptide, ADT-6, to improve the penetration of these therapeutic agents.</p><p><strong>Methods: </strong>We constructed a fusion protein of ADT-6 and green fluorescent protein (GFP) to evaluate its activity and transport through the epithelial cells' paracellular pathway. Using Escherichia coli strains for expression, we cloned the GFP-ADT-6 construct, which provides a solid foundation for our study's methodology.</p><p><strong>Results: </strong>Our molecular simulations showed that the linker between GFP and ADT-6 maintains the fusion protein's integrity and provides flexibility in receptor interaction. Permeability experiments revealed that ADT-6 markedly reduced transepithelial electrical resistance (TEER) and significantly increased GFP transfection in Caco-2 cell monolayers dose-dependently. Results of ELISA confirmed these findings, showing high GFP levels in the lower compartment of Transwell systems treated with GFP-ADT-6.</p><p><strong>Conclusions: </strong>This study demonstrates the potential of ADT-6 to deliver proteins from the paracellular route, enhance the bioavailability of pharmaceutical drugs by altering cell-cell interactions, and provide new opportunities for oral drug delivery strategies.</p>\",\"PeriodicalId\":45319,\"journal\":{\"name\":\"Reports of Biochemistry and Molecular Biology\",\"volume\":\"13 3\",\"pages\":\"349-357\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12050061/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports of Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61186/rbmb.13.3.349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports of Biochemistry and Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61186/rbmb.13.3.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tight Junction Modulatory Fusion Peptide (ADT-6) Enhances GFP Protein Permeability through the Paracellular Pathway in Caco-2 Cell Lines: An In-Vitro Study.
Background: The oral delivery of therapeutic peptides and proteins presents a significant challenge in pharmaceutical development due to barriers such as the intestinal epithelium and the blood-brain barrier (BBB). These barriers limit the passage of large, hydrophilic molecules through transcellular pathways and restrict paracellular transport due to intercellular tight junctions. This study investigates the potential of E- cadherin-modulating peptide, ADT-6, to improve the penetration of these therapeutic agents.
Methods: We constructed a fusion protein of ADT-6 and green fluorescent protein (GFP) to evaluate its activity and transport through the epithelial cells' paracellular pathway. Using Escherichia coli strains for expression, we cloned the GFP-ADT-6 construct, which provides a solid foundation for our study's methodology.
Results: Our molecular simulations showed that the linker between GFP and ADT-6 maintains the fusion protein's integrity and provides flexibility in receptor interaction. Permeability experiments revealed that ADT-6 markedly reduced transepithelial electrical resistance (TEER) and significantly increased GFP transfection in Caco-2 cell monolayers dose-dependently. Results of ELISA confirmed these findings, showing high GFP levels in the lower compartment of Transwell systems treated with GFP-ADT-6.
Conclusions: This study demonstrates the potential of ADT-6 to deliver proteins from the paracellular route, enhance the bioavailability of pharmaceutical drugs by altering cell-cell interactions, and provide new opportunities for oral drug delivery strategies.
期刊介绍:
The Reports of Biochemistry & Molecular Biology (RBMB) is the official journal of the Varastegan Institute for Medical Sciences and is dedicated to furthering international exchange of medical and biomedical science experience and opinion and a platform for worldwide dissemination. The RBMB is a medical journal that gives special emphasis to biochemical research and molecular biology studies. The Journal invites original and review articles, short communications, reports on experiments and clinical cases, and case reports containing new insights into any aspect of biochemistry and molecular biology that are not published or being considered for publication elsewhere. Publications are accepted in the form of reports of original research, brief communications, case reports, structured reviews, editorials, commentaries, views and perspectives, letters to authors, book reviews, resources, news, and event agenda.