Xunju Liu, Li Wang, Muhammad Aamir Manzoor, Wanxia Sun, Yan Xu, Muhammad Salman Haider, Zhengxin Lv, Jiyuan Wang, Ruie Liu, Songtao Jiu, Caixi Zhang
{"title":"揭开甜樱桃花蕾休眠释放关键因子PavGID1s的威力。","authors":"Xunju Liu, Li Wang, Muhammad Aamir Manzoor, Wanxia Sun, Yan Xu, Muhammad Salman Haider, Zhengxin Lv, Jiyuan Wang, Ruie Liu, Songtao Jiu, Caixi Zhang","doi":"10.1007/s11103-025-01589-3","DOIUrl":null,"url":null,"abstract":"<p><p>Exogenous hormones can regulate bud dormancy release, particularly in cases where inadequate winter chill accumulation due to global warming affects perennial plants. Gibberellin (GA) is recognized as a critical signal for dormancy release in woody perennials. This study explores the influence of GA and its signaling components on the dormancy release in sweet cherry. The external application of GA<sub>4 + 7</sub> significantly promoted the bud break rate and dormancy release. Notably, there was a substantial accumulation of GA<sub>3</sub>, GA<sub>4</sub>, and GA<sub>7</sub> in the buds, accompanied by a reduced concentration of abscisic acid (ABA) following GA treatment. RNA-Seq identified 8,610 differentially expressed transcripts in GA-treated buds compared to the Mock group. Transcriptome sequencing revealed differential expressions of PavGID1s, the GA receptor GID1, in sweet cherry flower buds after GA treatment. These findings were further verified across different seasons in sweet cherry. In both PavGID1b and PavGID1c, the open reading frame (ORF) is 1,032 bases long and encodes 344 amino acids. Overexpression of PavGID1b and PavGID1c resulted in early flowering and higher plants in Arabidopsis. However, these genes have opposing roles in seed germination in Arabidopsis. Furthermore, PavWRKY31 may regulate the stabilization and release of dormancy by modulating the transcriptional level of PavGID1c. PavGA20ox-2 and PavGID2 may also influence sweet cherry dormancy release by interacting with GID1s and affecting DELLA protein stability. These results provide a theoretical basis for understanding the regulatory effect of gibberellin on the bud dormancy of plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 3","pages":"60"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the power of PavGID1s: the critical player in sweet cherry flower bud dormancy release.\",\"authors\":\"Xunju Liu, Li Wang, Muhammad Aamir Manzoor, Wanxia Sun, Yan Xu, Muhammad Salman Haider, Zhengxin Lv, Jiyuan Wang, Ruie Liu, Songtao Jiu, Caixi Zhang\",\"doi\":\"10.1007/s11103-025-01589-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exogenous hormones can regulate bud dormancy release, particularly in cases where inadequate winter chill accumulation due to global warming affects perennial plants. Gibberellin (GA) is recognized as a critical signal for dormancy release in woody perennials. This study explores the influence of GA and its signaling components on the dormancy release in sweet cherry. The external application of GA<sub>4 + 7</sub> significantly promoted the bud break rate and dormancy release. Notably, there was a substantial accumulation of GA<sub>3</sub>, GA<sub>4</sub>, and GA<sub>7</sub> in the buds, accompanied by a reduced concentration of abscisic acid (ABA) following GA treatment. RNA-Seq identified 8,610 differentially expressed transcripts in GA-treated buds compared to the Mock group. Transcriptome sequencing revealed differential expressions of PavGID1s, the GA receptor GID1, in sweet cherry flower buds after GA treatment. These findings were further verified across different seasons in sweet cherry. In both PavGID1b and PavGID1c, the open reading frame (ORF) is 1,032 bases long and encodes 344 amino acids. Overexpression of PavGID1b and PavGID1c resulted in early flowering and higher plants in Arabidopsis. However, these genes have opposing roles in seed germination in Arabidopsis. Furthermore, PavWRKY31 may regulate the stabilization and release of dormancy by modulating the transcriptional level of PavGID1c. PavGA20ox-2 and PavGID2 may also influence sweet cherry dormancy release by interacting with GID1s and affecting DELLA protein stability. These results provide a theoretical basis for understanding the regulatory effect of gibberellin on the bud dormancy of plants.</p>\",\"PeriodicalId\":20064,\"journal\":{\"name\":\"Plant Molecular Biology\",\"volume\":\"115 3\",\"pages\":\"60\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11103-025-01589-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01589-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unveiling the power of PavGID1s: the critical player in sweet cherry flower bud dormancy release.
Exogenous hormones can regulate bud dormancy release, particularly in cases where inadequate winter chill accumulation due to global warming affects perennial plants. Gibberellin (GA) is recognized as a critical signal for dormancy release in woody perennials. This study explores the influence of GA and its signaling components on the dormancy release in sweet cherry. The external application of GA4 + 7 significantly promoted the bud break rate and dormancy release. Notably, there was a substantial accumulation of GA3, GA4, and GA7 in the buds, accompanied by a reduced concentration of abscisic acid (ABA) following GA treatment. RNA-Seq identified 8,610 differentially expressed transcripts in GA-treated buds compared to the Mock group. Transcriptome sequencing revealed differential expressions of PavGID1s, the GA receptor GID1, in sweet cherry flower buds after GA treatment. These findings were further verified across different seasons in sweet cherry. In both PavGID1b and PavGID1c, the open reading frame (ORF) is 1,032 bases long and encodes 344 amino acids. Overexpression of PavGID1b and PavGID1c resulted in early flowering and higher plants in Arabidopsis. However, these genes have opposing roles in seed germination in Arabidopsis. Furthermore, PavWRKY31 may regulate the stabilization and release of dormancy by modulating the transcriptional level of PavGID1c. PavGA20ox-2 and PavGID2 may also influence sweet cherry dormancy release by interacting with GID1s and affecting DELLA protein stability. These results provide a theoretical basis for understanding the regulatory effect of gibberellin on the bud dormancy of plants.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.