Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller
{"title":"甲氧基自由基自旋振动谱的从头算模拟。","authors":"Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller","doi":"10.1063/5.0266367","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio simulation of spin-vibronic spectra of methoxy radical.\",\"authors\":\"Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller\",\"doi\":\"10.1063/5.0266367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0266367\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0266367","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ab initio simulation of spin-vibronic spectra of methoxy radical.
Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.