甲氧基自由基自旋振动谱的从头算模拟。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller
{"title":"甲氧基自由基自旋振动谱的从头算模拟。","authors":"Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller","doi":"10.1063/5.0266367","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio simulation of spin-vibronic spectra of methoxy radical.\",\"authors\":\"Ketan Sharma, Oleg A Vasilyev, John F Stanton, Terry A Miller\",\"doi\":\"10.1063/5.0266367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0266367\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0266367","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管关于甲氧基光谱的实验和理论工作已经从微波延伸到紫外线,并且已经进行了近50年,但部分光谱仍然是理论上模拟和可靠逐行分配的挑战。谱复杂性的产生是因为自由基具有非零电子自旋和基态的两个电子组分之间由于圆锥相交的存在而产生的显著的振动耦合。这项工作描述了一个完全从头开始的努力,以理解和分配从0到3000 cm-1以上的X ^ 2E状态的自旋振动能级,这个区域包括C-H对称和不对称拉伸的基本跃迁,这些跃迁以前没有被唯一地识别出来。在运动方程(EOM)-偶联簇单、双、三重(CCSDT)/原子自然轨道(ANO1)水平上计算了甲氧基的势能面。随后,通过使用基于机器学习的算法,将该势能面拟合为所有九个振动法向坐标的四次幂级数展开(在圆锥相交的最小值处确定)。加入自旋-轨道耦合后,采用Krylov-Schur和Lanczos算法,结合SOCJT3软件求解自旋-振动问题,使特征值及其特征向量收敛到3500 cm-1以内。后者与计算的偶极矩及其导数(使用EOM-CCSDT/ANO1水平的有限差分计算)一起使用,以确定自旋振动谱的光谱强度。用计算得到的跃迁频率和强度来模拟和分配观察到的自由基自旋振动谱的跃迁。详细讨论了分配的可信性及其意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ab initio simulation of spin-vibronic spectra of methoxy radical.

Despite the fact that experimental and theoretical work on the spectrum of methoxy has stretched from the microwave to the ultraviolet and proceeded for nearly 50 years, parts of the spectrum have remained a challenge to simulate theoretically and make reliable line-by-line assignments. The spectral complexity arises because the radical has a non-zero electron spin and significant vibronic coupling between the two electronic components of the ground state due to the presence of a conical intersection. This work describes a completely ab initio effort to understand and assign the spin-vibronic levels of the X̃2E state from 0 to above 3000 cm-1, a region that includes the fundamental transitions of the C-H symmetric and asymmetric stretches that have not previously been identified uniquely. A potential energy surface for methoxy was calculated at the equation-of-motion (EOM)-coupled cluster singles, doubles, and triples (CCSDT)/atomic natural orbital (ANO1) level of theory. Subsequently, this potential energy surface was fit to a quartic power series expansion of all nine vibrational normal coordinates (as determined at the minimum of the conical intersection) by the use of a machine-learning-based algorithm. After the addition of spin-orbit coupling, the spin-vibronic problem was solved using both the Krylov-Schur and Lanczos algorithms with the SOCJT3 software to converge eigenvalues up to 3500 cm-1 and their eigenvectors. The latter were used, in conjunction with the calculated dipole moment and its derivatives (calculated using finite differences at the EOM-CCSDT/ANO1 level), to determine spectral intensities for the spin-vibronic spectra. The calculated transition frequencies and intensities were used to simulate and assign the observed transitions of the spin-vibronic spectra of the radical. The credibility of the assignments and their significance is discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信