Alessandro Coretti, Sebastian Falkner, Phillip L Geissler, Christoph Dellago
{"title":"使用归一化流动学习液体系统平衡状态之间的映射。","authors":"Alessandro Coretti, Sebastian Falkner, Phillip L Geissler, Christoph Dellago","doi":"10.1063/5.0253034","DOIUrl":null,"url":null,"abstract":"<p><p>Generative models and, in particular, normalizing flows are a promising tool in statistical mechanics to address the sampling problem in condensed-matter systems. In this work, we investigate the potential of normalizing flows to learn a transformation to map different liquid systems into each other while allowing at the same time to obtain an unbiased equilibrium distribution. We apply this methodology to the mapping of a small system of fully repulsive disks modeled via the Weeks-Chandler-Andersen potential into a Lennard-Jones system in the liquid phase at different coordinates in the phase diagram. We obtain an improvement in the relative effective sample size of the generated distribution up to a factor of six compared to direct reweighting. We show that this factor can have a strong dependency on the thermodynamic parameters of the source and target system.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning mappings between equilibrium states of liquid systems using normalizing flows.\",\"authors\":\"Alessandro Coretti, Sebastian Falkner, Phillip L Geissler, Christoph Dellago\",\"doi\":\"10.1063/5.0253034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative models and, in particular, normalizing flows are a promising tool in statistical mechanics to address the sampling problem in condensed-matter systems. In this work, we investigate the potential of normalizing flows to learn a transformation to map different liquid systems into each other while allowing at the same time to obtain an unbiased equilibrium distribution. We apply this methodology to the mapping of a small system of fully repulsive disks modeled via the Weeks-Chandler-Andersen potential into a Lennard-Jones system in the liquid phase at different coordinates in the phase diagram. We obtain an improvement in the relative effective sample size of the generated distribution up to a factor of six compared to direct reweighting. We show that this factor can have a strong dependency on the thermodynamic parameters of the source and target system.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0253034\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253034","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Learning mappings between equilibrium states of liquid systems using normalizing flows.
Generative models and, in particular, normalizing flows are a promising tool in statistical mechanics to address the sampling problem in condensed-matter systems. In this work, we investigate the potential of normalizing flows to learn a transformation to map different liquid systems into each other while allowing at the same time to obtain an unbiased equilibrium distribution. We apply this methodology to the mapping of a small system of fully repulsive disks modeled via the Weeks-Chandler-Andersen potential into a Lennard-Jones system in the liquid phase at different coordinates in the phase diagram. We obtain an improvement in the relative effective sample size of the generated distribution up to a factor of six compared to direct reweighting. We show that this factor can have a strong dependency on the thermodynamic parameters of the source and target system.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.