{"title":"膜片钳技术用于单个内溶酶体囊泡分析。","authors":"Hsuan-Ti Wang, Cheng-Chang Chen","doi":"10.3791/67519","DOIUrl":null,"url":null,"abstract":"<p><p>Endolysosomal ion channels are critical for endolysosomal ion and pH homeostasis, membrane potential regulation, and vesicle trafficking. However, electrophysiologically accessing these channels within small intracellular vesicles has been a challenge. The development of endolysosomal patch-clamp techniques has been instrumental in overcoming this barrier, allowing for the direct measurement of ion channel activity in endolysosomal membranes. Compared to existing planar patch-clamp techniques, endolysosomal patch-clamp can simultaneously record multiple cells and easily combine with other measurement methods. Manual operation offers the advantage of visualizing targeted vesicles. It also addresses the limitation of the indispensable presence of Ca<sup>2+</sup> on one side of the endolysosomal membrane, increasing the flexibility of experimental design. Utilizing endolysosomal patch-clamp techniques enables the direct measurement and analysis of ion channel activity within endolysosomes. Given the close link between aberrant endolysosomal ion channel function and diseases such as neurodegenerative diseases and metabolic disorders, investigating and modulating these channels may unveil new drug targets. By restoring intracellular ion balance, we may alleviate or cure related diseases. Therefore, this technique is pivotal for discovering new drug targets and developing relevant medications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 218","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patch-Clamp Techniques for Single Endolysosomal Vesicle Analysis.\",\"authors\":\"Hsuan-Ti Wang, Cheng-Chang Chen\",\"doi\":\"10.3791/67519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endolysosomal ion channels are critical for endolysosomal ion and pH homeostasis, membrane potential regulation, and vesicle trafficking. However, electrophysiologically accessing these channels within small intracellular vesicles has been a challenge. The development of endolysosomal patch-clamp techniques has been instrumental in overcoming this barrier, allowing for the direct measurement of ion channel activity in endolysosomal membranes. Compared to existing planar patch-clamp techniques, endolysosomal patch-clamp can simultaneously record multiple cells and easily combine with other measurement methods. Manual operation offers the advantage of visualizing targeted vesicles. It also addresses the limitation of the indispensable presence of Ca<sup>2+</sup> on one side of the endolysosomal membrane, increasing the flexibility of experimental design. Utilizing endolysosomal patch-clamp techniques enables the direct measurement and analysis of ion channel activity within endolysosomes. Given the close link between aberrant endolysosomal ion channel function and diseases such as neurodegenerative diseases and metabolic disorders, investigating and modulating these channels may unveil new drug targets. By restoring intracellular ion balance, we may alleviate or cure related diseases. Therefore, this technique is pivotal for discovering new drug targets and developing relevant medications.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 218\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67519\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67519","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Patch-Clamp Techniques for Single Endolysosomal Vesicle Analysis.
Endolysosomal ion channels are critical for endolysosomal ion and pH homeostasis, membrane potential regulation, and vesicle trafficking. However, electrophysiologically accessing these channels within small intracellular vesicles has been a challenge. The development of endolysosomal patch-clamp techniques has been instrumental in overcoming this barrier, allowing for the direct measurement of ion channel activity in endolysosomal membranes. Compared to existing planar patch-clamp techniques, endolysosomal patch-clamp can simultaneously record multiple cells and easily combine with other measurement methods. Manual operation offers the advantage of visualizing targeted vesicles. It also addresses the limitation of the indispensable presence of Ca2+ on one side of the endolysosomal membrane, increasing the flexibility of experimental design. Utilizing endolysosomal patch-clamp techniques enables the direct measurement and analysis of ion channel activity within endolysosomes. Given the close link between aberrant endolysosomal ion channel function and diseases such as neurodegenerative diseases and metabolic disorders, investigating and modulating these channels may unveil new drug targets. By restoring intracellular ion balance, we may alleviate or cure related diseases. Therefore, this technique is pivotal for discovering new drug targets and developing relevant medications.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.