Samarjeet Prasad, Felix Aviat, James E Gonzales, Bernard R Brooks
{"title":"apoCHARMM:基于gpu的高性能分子动力学模拟,用于高级模拟方法。","authors":"Samarjeet Prasad, Felix Aviat, James E Gonzales, Bernard R Brooks","doi":"10.1063/5.0264937","DOIUrl":null,"url":null,"abstract":"<p><p>We present apoCHARMM, a high-performance molecular dynamics (MD) engine optimized for graphics processing unit (GPU) architectures, designed to accelerate the simulation of complex molecular systems. The distinctive features of apoCHARMM include single-GPU support for multiple Hamiltonians, computation of a full virial tensor for each Hamiltonian, and full support for orthorhombic periodic systems in both P1 and P21 space groups. Multiple Hamiltonians on a single GPU permit rapid single-GPU multi-dimensional replica exchange methods, multi-state enveloping distribution sampling methods, and several efficient free energy methods where efficiency is gained by eliminating post-processing requirements. The combination of these capabilities enables constant-pH molecular dynamics in explicit solvent with enveloping distribution sampling, where Hamiltonian replica exchange can be performed on a single GPU with minimal host-GPU memory transfers. A full atomic virial tensor allows support for many different pressure, surface tension, and temperature ensembles. Support for orthorhombic P21 systems allows for the simulation of lipid bilayers, where the two leaflets have equalized chemical potentials. apoCHARMM uses CUDA and modern C++ to enable efficient computation of energy, force, restraint, constraint, and integration calculations directly on the GPU. This GPU-exclusive design focus minimizes host-GPU memory transfers, ensuring optimal performance during simulations, with such transfers occurring only during logging or trajectory saving. Benchmark tests demonstrate that apoCHARMM achieves competitive or superior performance when compared to other GPU-based MD engines, positioning it as a versatile and useful tool for the molecular dynamics community.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 18","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074570/pdf/","citationCount":"0","resultStr":"{\"title\":\"apoCHARMM: High-performance molecular dynamics simulations on GPUs for advanced simulation methods.\",\"authors\":\"Samarjeet Prasad, Felix Aviat, James E Gonzales, Bernard R Brooks\",\"doi\":\"10.1063/5.0264937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present apoCHARMM, a high-performance molecular dynamics (MD) engine optimized for graphics processing unit (GPU) architectures, designed to accelerate the simulation of complex molecular systems. The distinctive features of apoCHARMM include single-GPU support for multiple Hamiltonians, computation of a full virial tensor for each Hamiltonian, and full support for orthorhombic periodic systems in both P1 and P21 space groups. Multiple Hamiltonians on a single GPU permit rapid single-GPU multi-dimensional replica exchange methods, multi-state enveloping distribution sampling methods, and several efficient free energy methods where efficiency is gained by eliminating post-processing requirements. The combination of these capabilities enables constant-pH molecular dynamics in explicit solvent with enveloping distribution sampling, where Hamiltonian replica exchange can be performed on a single GPU with minimal host-GPU memory transfers. A full atomic virial tensor allows support for many different pressure, surface tension, and temperature ensembles. Support for orthorhombic P21 systems allows for the simulation of lipid bilayers, where the two leaflets have equalized chemical potentials. apoCHARMM uses CUDA and modern C++ to enable efficient computation of energy, force, restraint, constraint, and integration calculations directly on the GPU. This GPU-exclusive design focus minimizes host-GPU memory transfers, ensuring optimal performance during simulations, with such transfers occurring only during logging or trajectory saving. Benchmark tests demonstrate that apoCHARMM achieves competitive or superior performance when compared to other GPU-based MD engines, positioning it as a versatile and useful tool for the molecular dynamics community.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"162 18\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0264937\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0264937","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
apoCHARMM: High-performance molecular dynamics simulations on GPUs for advanced simulation methods.
We present apoCHARMM, a high-performance molecular dynamics (MD) engine optimized for graphics processing unit (GPU) architectures, designed to accelerate the simulation of complex molecular systems. The distinctive features of apoCHARMM include single-GPU support for multiple Hamiltonians, computation of a full virial tensor for each Hamiltonian, and full support for orthorhombic periodic systems in both P1 and P21 space groups. Multiple Hamiltonians on a single GPU permit rapid single-GPU multi-dimensional replica exchange methods, multi-state enveloping distribution sampling methods, and several efficient free energy methods where efficiency is gained by eliminating post-processing requirements. The combination of these capabilities enables constant-pH molecular dynamics in explicit solvent with enveloping distribution sampling, where Hamiltonian replica exchange can be performed on a single GPU with minimal host-GPU memory transfers. A full atomic virial tensor allows support for many different pressure, surface tension, and temperature ensembles. Support for orthorhombic P21 systems allows for the simulation of lipid bilayers, where the two leaflets have equalized chemical potentials. apoCHARMM uses CUDA and modern C++ to enable efficient computation of energy, force, restraint, constraint, and integration calculations directly on the GPU. This GPU-exclusive design focus minimizes host-GPU memory transfers, ensuring optimal performance during simulations, with such transfers occurring only during logging or trajectory saving. Benchmark tests demonstrate that apoCHARMM achieves competitive or superior performance when compared to other GPU-based MD engines, positioning it as a versatile and useful tool for the molecular dynamics community.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.