Xinyuan Yu, Lihong Dang, Ashis Dhar, Ran Zhang, Feng Xu, Ivan Spasojevic, Huaxin Sheng, Wei Yang
{"title":"ATF6信号的激活对年轻和老年小鼠永久性中风后的长期有益影响","authors":"Xinyuan Yu, Lihong Dang, Ashis Dhar, Ran Zhang, Feng Xu, Ivan Spasojevic, Huaxin Sheng, Wei Yang","doi":"10.1007/s12975-025-01351-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke disrupts protein homeostasis in brain cells, causes endoplasmic reticulum (ER) stress, and consequently activates the unfolded protein response (UPR). The primary function of UPR activation is to help cells restore ER function, thereby promoting cell survival. A major adaptive UPR branch is mediated by activating transcription factor 6 (ATF6). We previously provided experimental evidence that activation of ATF6 signaling in neurons improves short-term outcome after both transient and permanent stroke. However, the effect of ATF6 activation in astrocytes on stroke outcome remains undetermined, and critically, the long-term therapeutic potential of targeting this UPR branch in permanent stroke has not been evaluated. The current study aimed to address these two critical unknowns. First, using conditional knock-in mice in which functional short-form ATF6 (sATF6) is specifically expressed in astrocytes, we demonstrated that astrocytic ATF6 activation modestly improved outcome after permanent stroke. Then, our pharmacokinetic analysis indicated that compound AA147, an ATF6-specific activator, can cross the blood-brain barrier. Lastly, we found that post-stroke treatment with AA147 had no significant beneficial effect on short-term outcome, but improved long-term functional recovery in both young and aged mice after permanent stroke. Together with previous findings, our data support the notion that the ATF6 pathway is a promising target for stroke therapy.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"1799-1810"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of ATF6 Signaling Confers Long-Term Beneficial Effects in Young and Aged Mice After Permanent Stroke.\",\"authors\":\"Xinyuan Yu, Lihong Dang, Ashis Dhar, Ran Zhang, Feng Xu, Ivan Spasojevic, Huaxin Sheng, Wei Yang\",\"doi\":\"10.1007/s12975-025-01351-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic stroke disrupts protein homeostasis in brain cells, causes endoplasmic reticulum (ER) stress, and consequently activates the unfolded protein response (UPR). The primary function of UPR activation is to help cells restore ER function, thereby promoting cell survival. A major adaptive UPR branch is mediated by activating transcription factor 6 (ATF6). We previously provided experimental evidence that activation of ATF6 signaling in neurons improves short-term outcome after both transient and permanent stroke. However, the effect of ATF6 activation in astrocytes on stroke outcome remains undetermined, and critically, the long-term therapeutic potential of targeting this UPR branch in permanent stroke has not been evaluated. The current study aimed to address these two critical unknowns. First, using conditional knock-in mice in which functional short-form ATF6 (sATF6) is specifically expressed in astrocytes, we demonstrated that astrocytic ATF6 activation modestly improved outcome after permanent stroke. Then, our pharmacokinetic analysis indicated that compound AA147, an ATF6-specific activator, can cross the blood-brain barrier. Lastly, we found that post-stroke treatment with AA147 had no significant beneficial effect on short-term outcome, but improved long-term functional recovery in both young and aged mice after permanent stroke. Together with previous findings, our data support the notion that the ATF6 pathway is a promising target for stroke therapy.</p>\",\"PeriodicalId\":23237,\"journal\":{\"name\":\"Translational Stroke Research\",\"volume\":\" \",\"pages\":\"1799-1810\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Stroke Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12975-025-01351-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-025-01351-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Activation of ATF6 Signaling Confers Long-Term Beneficial Effects in Young and Aged Mice After Permanent Stroke.
Ischemic stroke disrupts protein homeostasis in brain cells, causes endoplasmic reticulum (ER) stress, and consequently activates the unfolded protein response (UPR). The primary function of UPR activation is to help cells restore ER function, thereby promoting cell survival. A major adaptive UPR branch is mediated by activating transcription factor 6 (ATF6). We previously provided experimental evidence that activation of ATF6 signaling in neurons improves short-term outcome after both transient and permanent stroke. However, the effect of ATF6 activation in astrocytes on stroke outcome remains undetermined, and critically, the long-term therapeutic potential of targeting this UPR branch in permanent stroke has not been evaluated. The current study aimed to address these two critical unknowns. First, using conditional knock-in mice in which functional short-form ATF6 (sATF6) is specifically expressed in astrocytes, we demonstrated that astrocytic ATF6 activation modestly improved outcome after permanent stroke. Then, our pharmacokinetic analysis indicated that compound AA147, an ATF6-specific activator, can cross the blood-brain barrier. Lastly, we found that post-stroke treatment with AA147 had no significant beneficial effect on short-term outcome, but improved long-term functional recovery in both young and aged mice after permanent stroke. Together with previous findings, our data support the notion that the ATF6 pathway is a promising target for stroke therapy.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.