基于时间-空间自适应提示的任意片段模型的心脏磁共振分割的可行性研究。

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Zhennong Chen, Sekeun Kim, Hui Ren, Sunghwan Kim, Siyeop Yoon, Quanzheng Li, Xiang Li
{"title":"基于时间-空间自适应提示的任意片段模型的心脏磁共振分割的可行性研究。","authors":"Zhennong Chen, Sekeun Kim, Hui Ren, Sunghwan Kim, Siyeop Yoon, Quanzheng Li, Xiang Li","doi":"10.1016/j.jocmr.2025.101909","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We propose an approach to adapt a segmentation foundation model, segment-anything-model (SAM), for cine Cardiac Magnetic Resonance (CMR) segmentation and evaluate its generalization performance on unseen datasets.</p><p><strong>Methods: </strong>We present our model, cineCMR-SAM, which introduces a temporal-spatial attention mechanism to produce segmentation across one cardiac cycle. We freeze the pre-trained SAM's weights to leverage SAM's generalizability while fine-tuning the rest of the model on two public cine CMR datasets. Our model also enables text prompts to specify the view type (short-axis or long-axis) of the input slices and box prompts to guide the segmentation region. We evaluated our model's generalization performance on three external testing datasets including a public multi-center, multi-vendor testing dataset of 136 cases and two retrospectively collected in-house datasets from two different centers with specific pathologies: aortic stenosis (40 cases) and heart failure with preserved ejection fraction (HFpEF) (53 cases).</p><p><strong>Results: </strong>Our approach achieved superior generalization in both the public testing dataset (Dice for LV = 0.94 and for myocardium = 0.86) and two in-house datasets (Dice ≥ 0.90 for LV and ≥ 0.82 for myocardium) compared to existing CMR deep learning segmentation methods. Clinical parameters derived from automatic and manual segmentations showed a strong correlation (r ≥ 0.90). The use of both text prompts and box prompts enhanced the segmentation accuracy.</p><p><strong>Conclusion: </strong>cineCMR-SAM effectively adapts SAM for cine CMR segmentation, achieving high generalizability and superior accuracy on unseen datasets.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101909"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cine Cardiac Magnetic Resonance Segmentation using Temporal-spatial Adaptation of Prompt-enabled Segment-Anything-Model: A Feasibility Study.\",\"authors\":\"Zhennong Chen, Sekeun Kim, Hui Ren, Sunghwan Kim, Siyeop Yoon, Quanzheng Li, Xiang Li\",\"doi\":\"10.1016/j.jocmr.2025.101909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We propose an approach to adapt a segmentation foundation model, segment-anything-model (SAM), for cine Cardiac Magnetic Resonance (CMR) segmentation and evaluate its generalization performance on unseen datasets.</p><p><strong>Methods: </strong>We present our model, cineCMR-SAM, which introduces a temporal-spatial attention mechanism to produce segmentation across one cardiac cycle. We freeze the pre-trained SAM's weights to leverage SAM's generalizability while fine-tuning the rest of the model on two public cine CMR datasets. Our model also enables text prompts to specify the view type (short-axis or long-axis) of the input slices and box prompts to guide the segmentation region. We evaluated our model's generalization performance on three external testing datasets including a public multi-center, multi-vendor testing dataset of 136 cases and two retrospectively collected in-house datasets from two different centers with specific pathologies: aortic stenosis (40 cases) and heart failure with preserved ejection fraction (HFpEF) (53 cases).</p><p><strong>Results: </strong>Our approach achieved superior generalization in both the public testing dataset (Dice for LV = 0.94 and for myocardium = 0.86) and two in-house datasets (Dice ≥ 0.90 for LV and ≥ 0.82 for myocardium) compared to existing CMR deep learning segmentation methods. Clinical parameters derived from automatic and manual segmentations showed a strong correlation (r ≥ 0.90). The use of both text prompts and box prompts enhanced the segmentation accuracy.</p><p><strong>Conclusion: </strong>cineCMR-SAM effectively adapts SAM for cine CMR segmentation, achieving high generalizability and superior accuracy on unseen datasets.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101909\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2025.101909\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101909","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们提出了一种将分割基础模型——任意分割模型(segment-anything-model, SAM)应用于电影心脏磁共振(CMR)分割的方法,并评估了其在未知数据集上的泛化性能。方法:我们提出了我们的模型,cineCMR-SAM,它引入了一个时空注意机制来产生跨一个心动周期的分割。我们冻结了预训练的SAM的权重,以利用SAM的泛化性,同时在两个公共电影CMR数据集上微调模型的其余部分。我们的模型还支持文本提示来指定输入切片的视图类型(短轴或长轴),支持框提示来指导分割区域。我们在三个外部测试数据集上评估了我们的模型的泛化性能,包括一个公共的多中心、多供应商的136例测试数据集和两个回顾性收集的来自两个不同中心的内部数据集,这些数据集具有特定的病理:主动脉狭窄(40例)和保留射血分数(HFpEF)的心力衰竭(53例)。结果:与现有的CMR深度学习分割方法相比,我们的方法在公共测试数据集(LV = 0.94,心肌= 0.86)和两个内部数据集(LV≥0.90,心肌≥0.82)上都取得了更好的泛化效果。自动和手动分割的临床参数显示出很强的相关性(r≥0.90)。文本提示和框提示的使用提高了分割的准确性。结论:cineCMR-SAM有效地将SAM应用于电影CMR分割,在未见数据集上具有较高的泛化性和较好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cine Cardiac Magnetic Resonance Segmentation using Temporal-spatial Adaptation of Prompt-enabled Segment-Anything-Model: A Feasibility Study.

Background: We propose an approach to adapt a segmentation foundation model, segment-anything-model (SAM), for cine Cardiac Magnetic Resonance (CMR) segmentation and evaluate its generalization performance on unseen datasets.

Methods: We present our model, cineCMR-SAM, which introduces a temporal-spatial attention mechanism to produce segmentation across one cardiac cycle. We freeze the pre-trained SAM's weights to leverage SAM's generalizability while fine-tuning the rest of the model on two public cine CMR datasets. Our model also enables text prompts to specify the view type (short-axis or long-axis) of the input slices and box prompts to guide the segmentation region. We evaluated our model's generalization performance on three external testing datasets including a public multi-center, multi-vendor testing dataset of 136 cases and two retrospectively collected in-house datasets from two different centers with specific pathologies: aortic stenosis (40 cases) and heart failure with preserved ejection fraction (HFpEF) (53 cases).

Results: Our approach achieved superior generalization in both the public testing dataset (Dice for LV = 0.94 and for myocardium = 0.86) and two in-house datasets (Dice ≥ 0.90 for LV and ≥ 0.82 for myocardium) compared to existing CMR deep learning segmentation methods. Clinical parameters derived from automatic and manual segmentations showed a strong correlation (r ≥ 0.90). The use of both text prompts and box prompts enhanced the segmentation accuracy.

Conclusion: cineCMR-SAM effectively adapts SAM for cine CMR segmentation, achieving high generalizability and superior accuracy on unseen datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信