{"title":"用于快速、长期、近各向同性亚细胞成像的快速自适应超分辨率晶格光片显微镜。","authors":"Chang Qiao, Ziwei Li, Zongfa Wang, Yuhuan Lin, Chong Liu, Siwei Zhang, Yong Liu, Yun Feng, Xiaoyu Yang, Wenfeng Fu, Xue Dong, Jiabao Guo, Wencong Xu, Xinyu Wang, Tao Jiang, Quan Meng, Qinghua Wang, Qionghai Dai, Dong Li","doi":"10.1038/s41592-025-02678-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"1059-1069"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-adaptive super-resolution lattice light-sheet microscopy for rapid, long-term, near-isotropic subcellular imaging.\",\"authors\":\"Chang Qiao, Ziwei Li, Zongfa Wang, Yuhuan Lin, Chong Liu, Siwei Zhang, Yong Liu, Yun Feng, Xiaoyu Yang, Wenfeng Fu, Xue Dong, Jiabao Guo, Wencong Xu, Xinyu Wang, Tao Jiang, Quan Meng, Qinghua Wang, Qionghai Dai, Dong Li\",\"doi\":\"10.1038/s41592-025-02678-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"1059-1069\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02678-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02678-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.