用于快速、长期、近各向同性亚细胞成像的快速自适应超分辨率晶格光片显微镜。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-29 DOI:10.1038/s41592-025-02678-3
Chang Qiao, Ziwei Li, Zongfa Wang, Yuhuan Lin, Chong Liu, Siwei Zhang, Yong Liu, Yun Feng, Xiaoyu Yang, Wenfeng Fu, Xue Dong, Jiabao Guo, Wencong Xu, Xinyu Wang, Tao Jiang, Quan Meng, Qinghua Wang, Qionghai Dai, Dong Li
{"title":"用于快速、长期、近各向同性亚细胞成像的快速自适应超分辨率晶格光片显微镜。","authors":"Chang Qiao, Ziwei Li, Zongfa Wang, Yuhuan Lin, Chong Liu, Siwei Zhang, Yong Liu, Yun Feng, Xiaoyu Yang, Wenfeng Fu, Xue Dong, Jiabao Guo, Wencong Xu, Xinyu Wang, Tao Jiang, Quan Meng, Qinghua Wang, Qionghai Dai, Dong Li","doi":"10.1038/s41592-025-02678-3","DOIUrl":null,"url":null,"abstract":"<p><p>Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"1059-1069"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-adaptive super-resolution lattice light-sheet microscopy for rapid, long-term, near-isotropic subcellular imaging.\",\"authors\":\"Chang Qiao, Ziwei Li, Zongfa Wang, Yuhuan Lin, Chong Liu, Siwei Zhang, Yong Liu, Yun Feng, Xiaoyu Yang, Wenfeng Fu, Xue Dong, Jiabao Guo, Wencong Xu, Xinyu Wang, Tao Jiang, Quan Meng, Qinghua Wang, Qionghai Dai, Dong Li\",\"doi\":\"10.1038/s41592-025-02678-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"1059-1069\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02678-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02678-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

晶格光片显微镜提供了一个重要的观察窗口,进入细胞内和细胞间生理的活标本,但在衍射有限的分辨率或各向异性超分辨率与结构照明。在这里,我们提出了基于元学习的反射晶格光片虚拟结构照明显微镜(Meta-rLLS-VSIM),它将晶格光片显微镜升级到接近各向同性的超分辨率,横向~120 nm,轴向~160 nm,而无需修改核心光学系统或损失其他活细胞成像指标。此外,我们设计了一种前端成像系统和后端元学习框架协同的自适应在线训练方法,将对训练数据的需求减少了10倍,将数据采集和模型训练的总时间缩短到数十秒。我们展示了Meta-rLLS-VSIM的多功能,通过对数百个多色体积的各种生物过程进行超高时空分辨率成像,描绘了胚胎和真核细胞中多个细胞器的纳米级分布、动力学和相互作用模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast-adaptive super-resolution lattice light-sheet microscopy for rapid, long-term, near-isotropic subcellular imaging.

Lattice light-sheet microscopy provides a crucial observation window into intra- and intercellular physiology of living specimens but at the diffraction-limited resolution or anisotropic super-resolution with structured illumination. Here we present meta-learning-empowered reflective lattice light-sheet virtual structured illumination microscopy (Meta-rLLS-VSIM), which upgrades lattice light-sheet microscopy to a near-isotropic super resolution of ~120 nm laterally and ~160 nm axially without modifications of the core optical system or loss of other live-cell imaging metrics. Moreover, we devised an adaptive online training approach by synergizing the front-end imaging system and back-end meta-learning framework, which alleviated the demand for training data by tenfold and reduced the total time for data acquisition and model training down to tens of seconds. We demonstrate the versatile functionalities of Meta-rLLS-VSIM by imaging a variety of bioprocesses with ultrahigh spatiotemporal resolution for hundreds of multicolor volumes, delineating the nanoscale distributions, dynamics and interaction patterns of multiple organelles in embryos and eukaryotic cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信