{"title":"评估COVID-19预防和学习损失之间的权衡:基于主体的模拟分析。","authors":"Kenneth Chen, Eva A Enns","doi":"10.1098/rsos.231842","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic presented significant challenges in educational settings. Schools implemented a variety of COVID-19 mitigation strategies, some of which were controversial due to potential disruptions to in-person learning. We developed an agent-based model of COVID-19 in a US high school setting to evaluate potential trade-offs between preventing COVID-19 infections versus avoiding in-person learning loss under different mitigation policies in a post-Omicron context. Mitigation policies included isolation alone and in combination with quarantine of exposed students, weekly testing of all students or testing of exposed students ('test-to-stay') under different scenarios of mask use and booster dose uptake. Outcomes were simulated over an 11 week trimester. We found that requiring a full 5 or 10 day quarantine of exposed students reduced COVID-19 infections by five to sevenfold relative to isolation alone, but at a cost of nearly 40% learning days lost. Test-to-stay achieved nearly the same level of infection reduction with lower levels of learning loss. Weekly testing also reduced COVID-19 infections but was less effective and incurred higher learning loss than test-to-stay. Universal masking and increased vaccination not only reduced infections at no cost to learning but also synergized with other strategies to reduce trade-offs.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 4","pages":"231842"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating trade-offs between COVID-19 prevention and learning loss: an agent-based simulation analysis.\",\"authors\":\"Kenneth Chen, Eva A Enns\",\"doi\":\"10.1098/rsos.231842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic presented significant challenges in educational settings. Schools implemented a variety of COVID-19 mitigation strategies, some of which were controversial due to potential disruptions to in-person learning. We developed an agent-based model of COVID-19 in a US high school setting to evaluate potential trade-offs between preventing COVID-19 infections versus avoiding in-person learning loss under different mitigation policies in a post-Omicron context. Mitigation policies included isolation alone and in combination with quarantine of exposed students, weekly testing of all students or testing of exposed students ('test-to-stay') under different scenarios of mask use and booster dose uptake. Outcomes were simulated over an 11 week trimester. We found that requiring a full 5 or 10 day quarantine of exposed students reduced COVID-19 infections by five to sevenfold relative to isolation alone, but at a cost of nearly 40% learning days lost. Test-to-stay achieved nearly the same level of infection reduction with lower levels of learning loss. Weekly testing also reduced COVID-19 infections but was less effective and incurred higher learning loss than test-to-stay. Universal masking and increased vaccination not only reduced infections at no cost to learning but also synergized with other strategies to reduce trade-offs.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 4\",\"pages\":\"231842\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.231842\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231842","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluating trade-offs between COVID-19 prevention and learning loss: an agent-based simulation analysis.
The COVID-19 pandemic presented significant challenges in educational settings. Schools implemented a variety of COVID-19 mitigation strategies, some of which were controversial due to potential disruptions to in-person learning. We developed an agent-based model of COVID-19 in a US high school setting to evaluate potential trade-offs between preventing COVID-19 infections versus avoiding in-person learning loss under different mitigation policies in a post-Omicron context. Mitigation policies included isolation alone and in combination with quarantine of exposed students, weekly testing of all students or testing of exposed students ('test-to-stay') under different scenarios of mask use and booster dose uptake. Outcomes were simulated over an 11 week trimester. We found that requiring a full 5 or 10 day quarantine of exposed students reduced COVID-19 infections by five to sevenfold relative to isolation alone, but at a cost of nearly 40% learning days lost. Test-to-stay achieved nearly the same level of infection reduction with lower levels of learning loss. Weekly testing also reduced COVID-19 infections but was less effective and incurred higher learning loss than test-to-stay. Universal masking and increased vaccination not only reduced infections at no cost to learning but also synergized with other strategies to reduce trade-offs.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.