啮齿类动物半规管形态及其与运动的关系。

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY
Lily Hou, Ornella C Bertrand, Hiruni N Mudannayake, Campbell Rolian, Susanne Cote
{"title":"啮齿类动物半规管形态及其与运动的关系。","authors":"Lily Hou, Ornella C Bertrand, Hiruni N Mudannayake, Campbell Rolian, Susanne Cote","doi":"10.1111/joa.14263","DOIUrl":null,"url":null,"abstract":"<p><p>Anatomical structures vary among mammals with different locomotor behaviours, including sensory structures such as the semicircular canals (SCCs) in the inner ear. Recent SCC research has examined various mammalian groups, but there has been a lack of research on rodents, the most speciose and diverse mammalian order. In this study, an extant sample of 98 rodent SCCs from 56 species across seven different locomotor behaviour categories (arboreal, fossorial, gliding, ricochetal, semiaquatic, semifossorial, terrestrial) was used to understand the correlations between SCC morphology and locomotion in rodents. Morphological correlates considered include the radius of curvature (R), overall 3-dimensional shape, and angles between pairs of canals (orthogonality). Our results show that agile arboreal taxa have larger R for their body size, and fossorial taxa have smaller R for their body size. Shape among specialized locomotor behaviours (arboreal, gliding vs. fossorial) can be differentiated, while other \"generalist\" categories overlap in morphospace. Specialized locomotor categories can be predicted with greater precision and sensitivity, while other generalist categories tend to be miscategorized as terrestrial. Angles between canals are not consistent across locomotor categories, and more agile groups do not have more orthogonal angles, contrary to our predictions. SCC R and overall shape are robust indicators of specialized locomotor behaviours and can be informative in reconstructing the behaviour of fossil rodents.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semicircular canal morphology in Rodentia and its relationship to locomotion.\",\"authors\":\"Lily Hou, Ornella C Bertrand, Hiruni N Mudannayake, Campbell Rolian, Susanne Cote\",\"doi\":\"10.1111/joa.14263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anatomical structures vary among mammals with different locomotor behaviours, including sensory structures such as the semicircular canals (SCCs) in the inner ear. Recent SCC research has examined various mammalian groups, but there has been a lack of research on rodents, the most speciose and diverse mammalian order. In this study, an extant sample of 98 rodent SCCs from 56 species across seven different locomotor behaviour categories (arboreal, fossorial, gliding, ricochetal, semiaquatic, semifossorial, terrestrial) was used to understand the correlations between SCC morphology and locomotion in rodents. Morphological correlates considered include the radius of curvature (R), overall 3-dimensional shape, and angles between pairs of canals (orthogonality). Our results show that agile arboreal taxa have larger R for their body size, and fossorial taxa have smaller R for their body size. Shape among specialized locomotor behaviours (arboreal, gliding vs. fossorial) can be differentiated, while other \\\"generalist\\\" categories overlap in morphospace. Specialized locomotor categories can be predicted with greater precision and sensitivity, while other generalist categories tend to be miscategorized as terrestrial. Angles between canals are not consistent across locomotor categories, and more agile groups do not have more orthogonal angles, contrary to our predictions. SCC R and overall shape are robust indicators of specialized locomotor behaviours and can be informative in reconstructing the behaviour of fossil rodents.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14263\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

具有不同运动行为的哺乳动物的解剖结构各不相同,包括内耳的半规管(SCCs)等感觉结构。最近的SCC研究已经研究了各种哺乳动物群体,但对啮齿类动物(物种最多、种类最多的哺乳动物目)的研究一直缺乏。在这项研究中,来自56个物种的98个啮齿类SCC的现存样本被用于了解啮齿类SCC形态与运动之间的关系,这些SCC分布在7种不同的运动行为类别(树栖、穴居、滑翔、跳跳、半水生、半穴居和陆生)。形态学相关因素包括曲率半径(R)、整体三维形状和管道对之间的角度(正交性)。结果表明,敏捷型乔木类群的体型R值较大,而穴居类群的体型R值较小。特殊运动行为(树栖、滑翔和窝栖)的形状可以区分,而其他“通才”类别在形态空间中重叠。专门的运动类别可以更精确和敏感地预测,而其他通才类别往往被错误地归类为陆地。运河之间的角度在不同的运动类别中并不一致,更敏捷的群体没有更多的正交角度,这与我们的预测相反。SCC R和整体形状是特殊运动行为的可靠指标,可以为重建化石啮齿动物的行为提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semicircular canal morphology in Rodentia and its relationship to locomotion.

Anatomical structures vary among mammals with different locomotor behaviours, including sensory structures such as the semicircular canals (SCCs) in the inner ear. Recent SCC research has examined various mammalian groups, but there has been a lack of research on rodents, the most speciose and diverse mammalian order. In this study, an extant sample of 98 rodent SCCs from 56 species across seven different locomotor behaviour categories (arboreal, fossorial, gliding, ricochetal, semiaquatic, semifossorial, terrestrial) was used to understand the correlations between SCC morphology and locomotion in rodents. Morphological correlates considered include the radius of curvature (R), overall 3-dimensional shape, and angles between pairs of canals (orthogonality). Our results show that agile arboreal taxa have larger R for their body size, and fossorial taxa have smaller R for their body size. Shape among specialized locomotor behaviours (arboreal, gliding vs. fossorial) can be differentiated, while other "generalist" categories overlap in morphospace. Specialized locomotor categories can be predicted with greater precision and sensitivity, while other generalist categories tend to be miscategorized as terrestrial. Angles between canals are not consistent across locomotor categories, and more agile groups do not have more orthogonal angles, contrary to our predictions. SCC R and overall shape are robust indicators of specialized locomotor behaviours and can be informative in reconstructing the behaviour of fossil rodents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信