与离体模型相比,基于caco2的体外肠道生物黏附测量模型

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-12-03 eCollection Date: 2025-02-01 DOI:10.1002/smsc.202400461
Eliyahu Drori, Valeria Rahamim, Dhaval Patel, Yamm Anker, Sivan Meir, Gal Uzan, Shira Somech, Chen Drori, Tal Tzadok, Aharon Azagury
{"title":"与离体模型相比,基于caco2的体外肠道生物黏附测量模型","authors":"Eliyahu Drori, Valeria Rahamim, Dhaval Patel, Yamm Anker, Sivan Meir, Gal Uzan, Shira Somech, Chen Drori, Tal Tzadok, Aharon Azagury","doi":"10.1002/smsc.202400461","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an in vitro model using Caco-2 cells that can mimic the bioadhesion properties of the human intestinal epithelium, aiming to reduce the use of animal tissues, in line with the 3Rs principle-replacement, reduction, and refinement. Specifically, a texture analyzer was used to assess the bioadhesive strength of hydrogels (i.e., alginate (Alg), chitosan (Chit), and gelatin (Gel)) under various applied forces (20-200 mN) and contact times (120-420 s). The results demonstrate that the in vitro model effectively predicts the bioadhesive strength of the tested hydrogels to ex vivo tissues (i.e., from mice, sheep, and pigs), including the effects of applied force and contact time. Also provided is an analysis of the effect of microvilli morphology on bioadhesion where an inverse relationship was observed between microvilli linear density and bioadhesion strength, explaining the variability in results across animal models. This Caco-2-based model offers a practical, accessible, and cost-effective alternative to current ex vivo methods used for measuring bioadhesion fracture strength. It can be integrated into standardized testing protocols, providing a more ethical and scientifically robust approach to advancing bioadhesive drug delivery system research.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 2","pages":"2400461"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934890/pdf/","citationCount":"0","resultStr":"{\"title\":\"An In vitro Caco2-Based Model for Measuring Intestinal Bioadhesion Comparable to Ex vivo Models.\",\"authors\":\"Eliyahu Drori, Valeria Rahamim, Dhaval Patel, Yamm Anker, Sivan Meir, Gal Uzan, Shira Somech, Chen Drori, Tal Tzadok, Aharon Azagury\",\"doi\":\"10.1002/smsc.202400461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an in vitro model using Caco-2 cells that can mimic the bioadhesion properties of the human intestinal epithelium, aiming to reduce the use of animal tissues, in line with the 3Rs principle-replacement, reduction, and refinement. Specifically, a texture analyzer was used to assess the bioadhesive strength of hydrogels (i.e., alginate (Alg), chitosan (Chit), and gelatin (Gel)) under various applied forces (20-200 mN) and contact times (120-420 s). The results demonstrate that the in vitro model effectively predicts the bioadhesive strength of the tested hydrogels to ex vivo tissues (i.e., from mice, sheep, and pigs), including the effects of applied force and contact time. Also provided is an analysis of the effect of microvilli morphology on bioadhesion where an inverse relationship was observed between microvilli linear density and bioadhesion strength, explaining the variability in results across animal models. This Caco-2-based model offers a practical, accessible, and cost-effective alternative to current ex vivo methods used for measuring bioadhesion fracture strength. It can be integrated into standardized testing protocols, providing a more ethical and scientifically robust approach to advancing bioadhesive drug delivery system research.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 2\",\"pages\":\"2400461\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种体外模型,使用Caco-2细胞,可以模拟人类肠上皮的生物粘附特性,旨在减少动物组织的使用,符合3Rs原则-替代,减少和细化。具体来说,使用质地分析仪来评估水凝胶(即海藻酸盐(Alg),壳聚糖(Chit)和明胶(Gel))在不同施加力(20-200 mN)和接触时间(120-420 s)下的生物粘附强度。结果表明,体外模型有效地预测了所测试的水凝胶对离体组织(即小鼠,绵羊和猪)的生物粘附强度,包括施加的力和接触时间的影响。还提供了微绒毛形态对生物粘附的影响的分析,其中观察到微绒毛线性密度与生物粘附强度之间呈反比关系,解释了动物模型中结果的可变性。这种基于caco -2的模型为目前用于测量生物粘附断裂强度的离体方法提供了一种实用、易于获取且经济高效的替代方法。它可以整合到标准化的测试方案中,为推进生物黏附给药系统的研究提供一种更合乎伦理和科学的可靠方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An In vitro Caco2-Based Model for Measuring Intestinal Bioadhesion Comparable to Ex vivo Models.

This study presents an in vitro model using Caco-2 cells that can mimic the bioadhesion properties of the human intestinal epithelium, aiming to reduce the use of animal tissues, in line with the 3Rs principle-replacement, reduction, and refinement. Specifically, a texture analyzer was used to assess the bioadhesive strength of hydrogels (i.e., alginate (Alg), chitosan (Chit), and gelatin (Gel)) under various applied forces (20-200 mN) and contact times (120-420 s). The results demonstrate that the in vitro model effectively predicts the bioadhesive strength of the tested hydrogels to ex vivo tissues (i.e., from mice, sheep, and pigs), including the effects of applied force and contact time. Also provided is an analysis of the effect of microvilli morphology on bioadhesion where an inverse relationship was observed between microvilli linear density and bioadhesion strength, explaining the variability in results across animal models. This Caco-2-based model offers a practical, accessible, and cost-effective alternative to current ex vivo methods used for measuring bioadhesion fracture strength. It can be integrated into standardized testing protocols, providing a more ethical and scientifically robust approach to advancing bioadhesive drug delivery system research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信