单层Sn2Se2P4中各向异性电子、输运和光电特性的应变工程。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-04-30 DOI:10.3390/nano15090679
Haowen Xu, Yuehua Xu
{"title":"单层Sn2Se2P4中各向异性电子、输运和光电特性的应变工程。","authors":"Haowen Xu, Yuehua Xu","doi":"10.3390/nano15090679","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we demonstrate that the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium Green's function method. The calculations reveal that <i>a</i>-axis uniaxial compression of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer induces an indirect-to-direct bandgap transition (from 1.73 eV to 0.97 eV, as calculated by HSE06), reduces the hole effective mass by ≥70%, and amplifies current density by 684%. Conversely, <i>a</i>-axis uniaxial expansion (+8%) boosts ballistic transport (<i>a</i>/<i>b</i>-axis current ratio > 10<sup>5</sup>), rivaling black phosphorus. Notably, a striking negative differential conductance arises with the maximum <i>I</i><sub>peak</sub>/<i>I</i><sub>valley</sub> in the order of 10<sup>5</sup> under the 2% uniaxial compression along the <i>b</i>-axis of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer. Visible-range anisotropic absorption coefficients (~10<sup>5</sup> cm<sup>-1</sup>) are achieved, where -4% <i>a</i>-axis strain elevates the photocurrent density (6.27 μA mm<sup>-2</sup> at 2.45 eV) and external quantum efficiency (39.2%) beyond many 2D materials benchmarks. Non-monotonic strain-dependent photocurrent density peaks at 2.00 eV correlate with hole effective mass reduction patterns, confirming the carrier mobility of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer as the governing parameter for photogenerated charge separation. These results establish Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> as a multifunctional material enabling strain-tailored anisotropy for logic transistors, negative differential resistors, and photovoltaic devices, while guiding future investigations on environmental stabilization and heterostructure integration toward practical applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073495/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strain Engineering of Anisotropic Electronic, Transport, and Photoelectric Properties in Monolayer Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub>.\",\"authors\":\"Haowen Xu, Yuehua Xu\",\"doi\":\"10.3390/nano15090679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we demonstrate that the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium Green's function method. The calculations reveal that <i>a</i>-axis uniaxial compression of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer induces an indirect-to-direct bandgap transition (from 1.73 eV to 0.97 eV, as calculated by HSE06), reduces the hole effective mass by ≥70%, and amplifies current density by 684%. Conversely, <i>a</i>-axis uniaxial expansion (+8%) boosts ballistic transport (<i>a</i>/<i>b</i>-axis current ratio > 10<sup>5</sup>), rivaling black phosphorus. Notably, a striking negative differential conductance arises with the maximum <i>I</i><sub>peak</sub>/<i>I</i><sub>valley</sub> in the order of 10<sup>5</sup> under the 2% uniaxial compression along the <i>b</i>-axis of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer. Visible-range anisotropic absorption coefficients (~10<sup>5</sup> cm<sup>-1</sup>) are achieved, where -4% <i>a</i>-axis strain elevates the photocurrent density (6.27 μA mm<sup>-2</sup> at 2.45 eV) and external quantum efficiency (39.2%) beyond many 2D materials benchmarks. Non-monotonic strain-dependent photocurrent density peaks at 2.00 eV correlate with hole effective mass reduction patterns, confirming the carrier mobility of the Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> monolayer as the governing parameter for photogenerated charge separation. These results establish Sn<sub>2</sub>Se<sub>2</sub>P<sub>4</sub> as a multifunctional material enabling strain-tailored anisotropy for logic transistors, negative differential resistors, and photovoltaic devices, while guiding future investigations on environmental stabilization and heterostructure integration toward practical applications.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073495/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15090679\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15090679","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们证明了Sn2Se2P4单层具有固有的各向异性电子特性,具有载流子输运和光电子性质的应变协同调制,这是通过不同水平的密度泛函理论计算结合非平衡格林函数方法揭示的。计算结果表明,单轴压缩Sn2Se2P4单层膜引起了间接到直接的带隙跃迁(由HSE06计算从1.73 eV变为0.97 eV),使空穴有效质量降低≥70%,电流密度增大684%。相反,a轴单轴膨胀(+8%)促进弹道输运(a/b轴电流比bbb105),与黑磷相媲美。值得注意的是,在Sn2Se2P4单层沿b轴的2%单轴压缩下,出现了显著的负差分电导,最大Ipeak/Ivalley约为105。实现了可见光范围内各向异性吸收系数(~105 cm-1),其中-4%的a轴应变提高了光电流密度(2.45 eV时为6.27 μA mm-2)和外部量子效率(39.2%),超出了许多2D材料基准。非单调应变相关的光电流密度峰值在2.00 eV与空穴有效质量减少模式相关,证实了Sn2Se2P4单层的载流子迁移率是光生电荷分离的控制参数。这些结果表明,Sn2Se2P4是一种多功能材料,可用于逻辑晶体管、负差动电阻和光伏器件的应变定制各向异性,同时指导未来环境稳定和异质结构集成的研究走向实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain Engineering of Anisotropic Electronic, Transport, and Photoelectric Properties in Monolayer Sn2Se2P4.

In this study, we demonstrate that the Sn2Se2P4 monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium Green's function method. The calculations reveal that a-axis uniaxial compression of the Sn2Se2P4 monolayer induces an indirect-to-direct bandgap transition (from 1.73 eV to 0.97 eV, as calculated by HSE06), reduces the hole effective mass by ≥70%, and amplifies current density by 684%. Conversely, a-axis uniaxial expansion (+8%) boosts ballistic transport (a/b-axis current ratio > 105), rivaling black phosphorus. Notably, a striking negative differential conductance arises with the maximum Ipeak/Ivalley in the order of 105 under the 2% uniaxial compression along the b-axis of the Sn2Se2P4 monolayer. Visible-range anisotropic absorption coefficients (~105 cm-1) are achieved, where -4% a-axis strain elevates the photocurrent density (6.27 μA mm-2 at 2.45 eV) and external quantum efficiency (39.2%) beyond many 2D materials benchmarks. Non-monotonic strain-dependent photocurrent density peaks at 2.00 eV correlate with hole effective mass reduction patterns, confirming the carrier mobility of the Sn2Se2P4 monolayer as the governing parameter for photogenerated charge separation. These results establish Sn2Se2P4 as a multifunctional material enabling strain-tailored anisotropy for logic transistors, negative differential resistors, and photovoltaic devices, while guiding future investigations on environmental stabilization and heterostructure integration toward practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信