人工智能在肝癌手术中的应用:在第一次切口前预测手术成功。

IF 4.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Shu-Yen Chan, Patrick Twohig
{"title":"人工智能在肝癌手术中的应用:在第一次切口前预测手术成功。","authors":"Shu-Yen Chan, Patrick Twohig","doi":"10.3748/wjg.v31.i16.107221","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in machine learning have revolutionized preoperative risk assessment. In this article, we comment on the article by Huang <i>et al</i>, which presents a recent multicenter cohort study demonstrated that machine learning algorithms effectively stratify recurrence-free survival, providing a robust predictive framework for maximizing surgical outcomes in intrahepatic cholangiocarcinoma. By leveraging interpretable models, the research enhances clinical decision-making, allowing for more precise patient selection and personalized surgical strategies. These findings highlight the growing role of artificial intelligence in optimizing surgical outcomes and improving prognostic accuracy in hepatobiliary oncology.</p>","PeriodicalId":23778,"journal":{"name":"World Journal of Gastroenterology","volume":"31 16","pages":"107221"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in liver cancer surgery: Predicting success before the first incision.\",\"authors\":\"Shu-Yen Chan, Patrick Twohig\",\"doi\":\"10.3748/wjg.v31.i16.107221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in machine learning have revolutionized preoperative risk assessment. In this article, we comment on the article by Huang <i>et al</i>, which presents a recent multicenter cohort study demonstrated that machine learning algorithms effectively stratify recurrence-free survival, providing a robust predictive framework for maximizing surgical outcomes in intrahepatic cholangiocarcinoma. By leveraging interpretable models, the research enhances clinical decision-making, allowing for more precise patient selection and personalized surgical strategies. These findings highlight the growing role of artificial intelligence in optimizing surgical outcomes and improving prognostic accuracy in hepatobiliary oncology.</p>\",\"PeriodicalId\":23778,\"journal\":{\"name\":\"World Journal of Gastroenterology\",\"volume\":\"31 16\",\"pages\":\"107221\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3748/wjg.v31.i16.107221\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3748/wjg.v31.i16.107221","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习的进步彻底改变了术前风险评估。在这篇文章中,我们对Huang等人的文章进行了评论,该文章介绍了最近的一项多中心队列研究,该研究表明机器学习算法有效地分层了无复发生存率,为最大化肝内胆管癌的手术结果提供了一个强大的预测框架。通过利用可解释的模型,该研究增强了临床决策,允许更精确的患者选择和个性化的手术策略。这些发现强调了人工智能在优化手术结果和提高肝胆肿瘤预后准确性方面日益重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in liver cancer surgery: Predicting success before the first incision.

Advancements in machine learning have revolutionized preoperative risk assessment. In this article, we comment on the article by Huang et al, which presents a recent multicenter cohort study demonstrated that machine learning algorithms effectively stratify recurrence-free survival, providing a robust predictive framework for maximizing surgical outcomes in intrahepatic cholangiocarcinoma. By leveraging interpretable models, the research enhances clinical decision-making, allowing for more precise patient selection and personalized surgical strategies. These findings highlight the growing role of artificial intelligence in optimizing surgical outcomes and improving prognostic accuracy in hepatobiliary oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Gastroenterology
World Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
7.80
自引率
4.70%
发文量
464
审稿时长
2.4 months
期刊介绍: The primary aims of the WJG are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in gastroenterology and hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信