一种受珍珠启发的结构材料,通过原子水平设计具有热致变色性能和机械坚固性。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-17 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf098
Jun Pang, Ze-Yu Wang, Tao Song, Zhen-Bang Zhang, Yu-Feng Meng, Si-Chao Zhang, Long Zhang, Wei-Yi Xing, Shu-Hong Yu
{"title":"一种受珍珠启发的结构材料,通过原子水平设计具有热致变色性能和机械坚固性。","authors":"Jun Pang, Ze-Yu Wang, Tao Song, Zhen-Bang Zhang, Yu-Feng Meng, Si-Chao Zhang, Long Zhang, Wei-Yi Xing, Shu-Hong Yu","doi":"10.1093/nsr/nwaf098","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced structural materials are often required to exhibit a combination of light weight, high strength and superior toughness. Biomimetic strategies hold promise for achieving these seemingly conflicting mechanical properties simultaneously. However, current biomimetic structural materials lack active fire-warning and passive flame-retardant functionalities, which poses risks for their application in fire-prone scenarios. Herein, we present a nacre-mimetic alumina-cyanate resin composite (NAC) that has a combination of mechanical robustness with thermochromic and flame-retardant properties. Through controlled atomic doping, chromium atoms are incorporated into alumina microplatelets, forming solid-solution assembly units that exhibit reversible thermochromism and a solid-solution-strengthening effect. The bioinspired 'brick-and-mortar' structure endows the NAC with high strength (∼290.1 MPa) and fracture toughness (∼11.1 MPa m<sup>1/2</sup>). Coupled with a machine-learning-based image-recognition system, the NAC leverages its thermochromic properties to deliver a rapid fire warning within 9 s at 250°C, which is significantly faster than traditional electronic fire alarms. Its layered structure effectively impedes oxygen flow, achieving an oxygen-limiting index of 50%, and thus ensuring excellent flame-retardant performance. This design delays the combustion peak and reduces the heat-release value, thereby enhancing the flame-retardant performance. This work demonstrates the effective integration of a structural and functional design for active early fire warning and passive flame retardancy, paving the way for structural materials in advanced fire-warning systems in challenging environments.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf098"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983683/pdf/","citationCount":"0","resultStr":"{\"title\":\"A nacre-inspired structural material with thermochromic properties and mechanical robustness by atomic-level design.\",\"authors\":\"Jun Pang, Ze-Yu Wang, Tao Song, Zhen-Bang Zhang, Yu-Feng Meng, Si-Chao Zhang, Long Zhang, Wei-Yi Xing, Shu-Hong Yu\",\"doi\":\"10.1093/nsr/nwaf098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced structural materials are often required to exhibit a combination of light weight, high strength and superior toughness. Biomimetic strategies hold promise for achieving these seemingly conflicting mechanical properties simultaneously. However, current biomimetic structural materials lack active fire-warning and passive flame-retardant functionalities, which poses risks for their application in fire-prone scenarios. Herein, we present a nacre-mimetic alumina-cyanate resin composite (NAC) that has a combination of mechanical robustness with thermochromic and flame-retardant properties. Through controlled atomic doping, chromium atoms are incorporated into alumina microplatelets, forming solid-solution assembly units that exhibit reversible thermochromism and a solid-solution-strengthening effect. The bioinspired 'brick-and-mortar' structure endows the NAC with high strength (∼290.1 MPa) and fracture toughness (∼11.1 MPa m<sup>1/2</sup>). Coupled with a machine-learning-based image-recognition system, the NAC leverages its thermochromic properties to deliver a rapid fire warning within 9 s at 250°C, which is significantly faster than traditional electronic fire alarms. Its layered structure effectively impedes oxygen flow, achieving an oxygen-limiting index of 50%, and thus ensuring excellent flame-retardant performance. This design delays the combustion peak and reduces the heat-release value, thereby enhancing the flame-retardant performance. This work demonstrates the effective integration of a structural and functional design for active early fire warning and passive flame retardancy, paving the way for structural materials in advanced fire-warning systems in challenging environments.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 5\",\"pages\":\"nwaf098\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983683/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf098\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf098","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

先进的结构材料通常需要表现出轻量、高强度和优异韧性的组合。仿生策略有望同时实现这些看似矛盾的机械性能。然而,目前的仿生结构材料缺乏主动火灾预警和被动阻燃功能,这给其在火灾易发场景中的应用带来了风险。在此,我们提出了一种具有机械稳健性、热致变色性和阻燃性的模拟丙烯酸铝树脂复合材料(NAC)。通过控制原子掺杂,铬原子被整合到氧化铝微片中,形成具有可逆热致变色和固溶强化效应的固溶组装单元。受生物启发的“砖瓦”结构赋予NAC高强度(~ 290.1 MPa)和断裂韧性(~ 11.1 MPa m1/2)。与基于机器学习的图像识别系统相结合,NAC利用其热致变色特性在250°C下9秒内提供快速火灾警报,这比传统的电子火灾报警器要快得多。其分层结构有效阻碍氧气流动,达到50%的限氧指数,从而保证了优异的阻燃性能。这种设计延迟了燃烧峰值,降低了放热值,从而提高了阻燃性能。这项工作展示了主动早期火灾预警和被动阻燃的结构和功能设计的有效集成,为在具有挑战性的环境中使用先进火灾预警系统的结构材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nacre-inspired structural material with thermochromic properties and mechanical robustness by atomic-level design.

Advanced structural materials are often required to exhibit a combination of light weight, high strength and superior toughness. Biomimetic strategies hold promise for achieving these seemingly conflicting mechanical properties simultaneously. However, current biomimetic structural materials lack active fire-warning and passive flame-retardant functionalities, which poses risks for their application in fire-prone scenarios. Herein, we present a nacre-mimetic alumina-cyanate resin composite (NAC) that has a combination of mechanical robustness with thermochromic and flame-retardant properties. Through controlled atomic doping, chromium atoms are incorporated into alumina microplatelets, forming solid-solution assembly units that exhibit reversible thermochromism and a solid-solution-strengthening effect. The bioinspired 'brick-and-mortar' structure endows the NAC with high strength (∼290.1 MPa) and fracture toughness (∼11.1 MPa m1/2). Coupled with a machine-learning-based image-recognition system, the NAC leverages its thermochromic properties to deliver a rapid fire warning within 9 s at 250°C, which is significantly faster than traditional electronic fire alarms. Its layered structure effectively impedes oxygen flow, achieving an oxygen-limiting index of 50%, and thus ensuring excellent flame-retardant performance. This design delays the combustion peak and reduces the heat-release value, thereby enhancing the flame-retardant performance. This work demonstrates the effective integration of a structural and functional design for active early fire warning and passive flame retardancy, paving the way for structural materials in advanced fire-warning systems in challenging environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信