{"title":"两歧双歧杆菌G9-1与产丁酸菌共培养促进丁酸生产。","authors":"Haruka Yokota, Yoshiki Tanaka, Hiroshi Ohno","doi":"10.1111/1348-0421.13224","DOIUrl":null,"url":null,"abstract":"<p><p>Supplementation with Bifidobacterium bifidum G9-1 (BBG9-1) has been established to enhance the production of butyrate, a short-chain fatty acid (SCFA) known for its beneficial effects in alleviating constipation. We hypothesized that BBG9-1 alters gut microbiota such that bacteria that produce butyric acid from lactate and acetate become more abundant. In this study, we sought to determine whether BBG9-1 promotes the growth of butyrate-producing bacteria and thereby enhances butyrate production. BBG9-1 was cocultured with different butyrate-producing bacteria to compare differences in the SCFA production of cocultures and monocultures. We indeed detected significant increases in the production of SCFAs in cocultures compared to monocultures. Moreover, lactate and butyrate production increased in a time-dependent manner in the BBG9-1 and Faecalibacterium prausnitzii ID 6052 coculture. In addition, acetate production in cocultures initially increased until 16 h, followed by a decline between 20 and 24 h, and a subsequent significant increase at 48 h. Comparatively, lactate and acetate production in the BBG9-1 and Anaerostipes caccae JCM 13470<sup>T</sup> coculture peaked at 16 h and declined thereafter, and butyrate production increased in a time-dependent manner. In contrast, lactate, acetate, and butyrate production in the BBG9-1 and Roseburia hominis JCM 17582<sup>T</sup> coculture increased in a time-dependent manner. These findings indicate that butyrate-producing bacteria increase butyrate production by utilizing BBG9-1-produced lactate and acetate. Thus, the butyrate-mediated physiological activity of BBG9-1 could be attributed to an indirect enhancement of butyrate production.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coculture of Bifidobacterium bifidum G9-1 With Butyrate-Producing Bacteria Promotes Butyrate Production.\",\"authors\":\"Haruka Yokota, Yoshiki Tanaka, Hiroshi Ohno\",\"doi\":\"10.1111/1348-0421.13224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Supplementation with Bifidobacterium bifidum G9-1 (BBG9-1) has been established to enhance the production of butyrate, a short-chain fatty acid (SCFA) known for its beneficial effects in alleviating constipation. We hypothesized that BBG9-1 alters gut microbiota such that bacteria that produce butyric acid from lactate and acetate become more abundant. In this study, we sought to determine whether BBG9-1 promotes the growth of butyrate-producing bacteria and thereby enhances butyrate production. BBG9-1 was cocultured with different butyrate-producing bacteria to compare differences in the SCFA production of cocultures and monocultures. We indeed detected significant increases in the production of SCFAs in cocultures compared to monocultures. Moreover, lactate and butyrate production increased in a time-dependent manner in the BBG9-1 and Faecalibacterium prausnitzii ID 6052 coculture. In addition, acetate production in cocultures initially increased until 16 h, followed by a decline between 20 and 24 h, and a subsequent significant increase at 48 h. Comparatively, lactate and acetate production in the BBG9-1 and Anaerostipes caccae JCM 13470<sup>T</sup> coculture peaked at 16 h and declined thereafter, and butyrate production increased in a time-dependent manner. In contrast, lactate, acetate, and butyrate production in the BBG9-1 and Roseburia hominis JCM 17582<sup>T</sup> coculture increased in a time-dependent manner. These findings indicate that butyrate-producing bacteria increase butyrate production by utilizing BBG9-1-produced lactate and acetate. Thus, the butyrate-mediated physiological activity of BBG9-1 could be attributed to an indirect enhancement of butyrate production.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1348-0421.13224\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13224","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
补充两歧双歧杆菌G9-1 (BBG9-1)已被证实可以促进丁酸盐的产生,丁酸盐是一种短链脂肪酸(SCFA),具有缓解便秘的有益作用。我们假设BBG9-1改变了肠道微生物群,使从乳酸和醋酸盐中产生丁酸的细菌变得更加丰富。在这项研究中,我们试图确定BBG9-1是否促进丁酸产菌的生长,从而提高丁酸产量。BBG9-1与不同的丁酸产菌共培养,比较共培养和单培养的SCFA产量的差异。与单一培养相比,我们确实检测到共培养中scfa的产量显著增加。此外,在BBG9-1和prausnitzii Faecalibacterium ID 6052共培养中,乳酸和丁酸盐产量呈时间依赖性增加。此外,共培养中乙酸的产量最初增加到16 h,随后在20 ~ 24 h之间下降,随后在48 h显著增加。相比之下,BBG9-1与厌氧菌卡氏球菌JCM 13470T共培养的乳酸和乙酸产量在16 h达到峰值,随后下降,丁酸产量呈时间依赖性增加。相比之下,BBG9-1和Roseburia hominis JCM 17582T共培养的乳酸、乙酸和丁酸产量呈时间依赖性增加。这些结果表明,产丁酸菌通过利用bbg9 -1产生的乳酸和乙酸来提高丁酸产量。因此,丁酸盐介导的BBG9-1的生理活性可归因于间接增强丁酸盐的产生。
Coculture of Bifidobacterium bifidum G9-1 With Butyrate-Producing Bacteria Promotes Butyrate Production.
Supplementation with Bifidobacterium bifidum G9-1 (BBG9-1) has been established to enhance the production of butyrate, a short-chain fatty acid (SCFA) known for its beneficial effects in alleviating constipation. We hypothesized that BBG9-1 alters gut microbiota such that bacteria that produce butyric acid from lactate and acetate become more abundant. In this study, we sought to determine whether BBG9-1 promotes the growth of butyrate-producing bacteria and thereby enhances butyrate production. BBG9-1 was cocultured with different butyrate-producing bacteria to compare differences in the SCFA production of cocultures and monocultures. We indeed detected significant increases in the production of SCFAs in cocultures compared to monocultures. Moreover, lactate and butyrate production increased in a time-dependent manner in the BBG9-1 and Faecalibacterium prausnitzii ID 6052 coculture. In addition, acetate production in cocultures initially increased until 16 h, followed by a decline between 20 and 24 h, and a subsequent significant increase at 48 h. Comparatively, lactate and acetate production in the BBG9-1 and Anaerostipes caccae JCM 13470T coculture peaked at 16 h and declined thereafter, and butyrate production increased in a time-dependent manner. In contrast, lactate, acetate, and butyrate production in the BBG9-1 and Roseburia hominis JCM 17582T coculture increased in a time-dependent manner. These findings indicate that butyrate-producing bacteria increase butyrate production by utilizing BBG9-1-produced lactate and acetate. Thus, the butyrate-mediated physiological activity of BBG9-1 could be attributed to an indirect enhancement of butyrate production.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.