Yinchi Zhou, Ho Hin Lee, Yucheng Tang, Xin Yu, Qi Yang, Michael E Kim, Lucas W Remedios, Shunxing Bao, Jeffrey M Spraggins, Yuankai Huo, Bennett A Landman
{"title":"健康胰腺密集位移采样配准的多层对比计算机断层图谱。","authors":"Yinchi Zhou, Ho Hin Lee, Yucheng Tang, Xin Yu, Qi Yang, Michael E Kim, Lucas W Remedios, Shunxing Bao, Jeffrey M Spraggins, Yuankai Huo, Bennett A Landman","doi":"10.1117/1.JMI.12.2.024006","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diverse population demographics can lead to substantial variation in the human anatomy. Therefore, standard anatomical atlases are needed for interpreting organ-specific analyses. Among abdominal organs, the pancreas exhibits notable variability in volumetric morphology, shape, and appearance, complicating the generalization of population-wide features. Understanding the common features of a healthy pancreas is crucial for identifying biomarkers and diagnosing pancreatic diseases.</p><p><strong>Approach: </strong>We propose a high-resolution CT atlas framework optimized for the healthy pancreas. We introduce a deep-learning-based preprocessing technique to extract abdominal ROIs and leverage a hierarchical registration pipeline to align pancreatic anatomy across populations. Briefly, DEEDS affine and non-rigid registration techniques are employed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas, multi-phase contrast CT scans of 443 subjects (aged 15 to 50 years, with no reported history of pancreatic disease) were processed.</p><p><strong>Results: </strong>The two-stage DEEDS affine and non-rigid registration outperforms other state-of-the-art tools, achieving the highest scores for pancreas label transfer across all phases (non-contrast: 0.497, arterial: 0.505, portal venous: 0.494, delayed: 0.497). External evaluation with 100 portal venous scans and 13 labeled abdominal organs shows a mean Dice score of 0.504. The low variance between the pancreases of registered subjects and the obtained pancreas atlas further illustrates the generalizability of the proposed method.</p><p><strong>Conclusion: </strong>We introduce a high-resolution pancreas atlas framework to generalize healthy biomarkers across populations with multi-contrast abdominal CT. The atlases and the associated pancreas organ labels are publicly available through the Human Biomolecular Atlas Program (HuBMAP).</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 2","pages":"024006"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-contrast computed tomography atlas of healthy pancreas with dense displacement sampling registration.\",\"authors\":\"Yinchi Zhou, Ho Hin Lee, Yucheng Tang, Xin Yu, Qi Yang, Michael E Kim, Lucas W Remedios, Shunxing Bao, Jeffrey M Spraggins, Yuankai Huo, Bennett A Landman\",\"doi\":\"10.1117/1.JMI.12.2.024006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Diverse population demographics can lead to substantial variation in the human anatomy. Therefore, standard anatomical atlases are needed for interpreting organ-specific analyses. Among abdominal organs, the pancreas exhibits notable variability in volumetric morphology, shape, and appearance, complicating the generalization of population-wide features. Understanding the common features of a healthy pancreas is crucial for identifying biomarkers and diagnosing pancreatic diseases.</p><p><strong>Approach: </strong>We propose a high-resolution CT atlas framework optimized for the healthy pancreas. We introduce a deep-learning-based preprocessing technique to extract abdominal ROIs and leverage a hierarchical registration pipeline to align pancreatic anatomy across populations. Briefly, DEEDS affine and non-rigid registration techniques are employed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas, multi-phase contrast CT scans of 443 subjects (aged 15 to 50 years, with no reported history of pancreatic disease) were processed.</p><p><strong>Results: </strong>The two-stage DEEDS affine and non-rigid registration outperforms other state-of-the-art tools, achieving the highest scores for pancreas label transfer across all phases (non-contrast: 0.497, arterial: 0.505, portal venous: 0.494, delayed: 0.497). External evaluation with 100 portal venous scans and 13 labeled abdominal organs shows a mean Dice score of 0.504. The low variance between the pancreases of registered subjects and the obtained pancreas atlas further illustrates the generalizability of the proposed method.</p><p><strong>Conclusion: </strong>We introduce a high-resolution pancreas atlas framework to generalize healthy biomarkers across populations with multi-contrast abdominal CT. The atlases and the associated pancreas organ labels are publicly available through the Human Biomolecular Atlas Program (HuBMAP).</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 2\",\"pages\":\"024006\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.2.024006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.2.024006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Multi-contrast computed tomography atlas of healthy pancreas with dense displacement sampling registration.
Purpose: Diverse population demographics can lead to substantial variation in the human anatomy. Therefore, standard anatomical atlases are needed for interpreting organ-specific analyses. Among abdominal organs, the pancreas exhibits notable variability in volumetric morphology, shape, and appearance, complicating the generalization of population-wide features. Understanding the common features of a healthy pancreas is crucial for identifying biomarkers and diagnosing pancreatic diseases.
Approach: We propose a high-resolution CT atlas framework optimized for the healthy pancreas. We introduce a deep-learning-based preprocessing technique to extract abdominal ROIs and leverage a hierarchical registration pipeline to align pancreatic anatomy across populations. Briefly, DEEDS affine and non-rigid registration techniques are employed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas, multi-phase contrast CT scans of 443 subjects (aged 15 to 50 years, with no reported history of pancreatic disease) were processed.
Results: The two-stage DEEDS affine and non-rigid registration outperforms other state-of-the-art tools, achieving the highest scores for pancreas label transfer across all phases (non-contrast: 0.497, arterial: 0.505, portal venous: 0.494, delayed: 0.497). External evaluation with 100 portal venous scans and 13 labeled abdominal organs shows a mean Dice score of 0.504. The low variance between the pancreases of registered subjects and the obtained pancreas atlas further illustrates the generalizability of the proposed method.
Conclusion: We introduce a high-resolution pancreas atlas framework to generalize healthy biomarkers across populations with multi-contrast abdominal CT. The atlases and the associated pancreas organ labels are publicly available through the Human Biomolecular Atlas Program (HuBMAP).
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.