支持超表面的小卫星偏振成像。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sarah E Dean, Josephine Munro, Neuton Li, Robert Sharp, Dragomir N Neshev, Andrey A Sukhorukov
{"title":"支持超表面的小卫星偏振成像。","authors":"Sarah E Dean, Josephine Munro, Neuton Li, Robert Sharp, Dragomir N Neshev, Andrey A Sukhorukov","doi":"10.1039/d5na00298b","DOIUrl":null,"url":null,"abstract":"<p><p>Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observations. The relatively low cost of small-satellites makes their use in remote sensing more accessible. However, their size and weight limitations cannot accommodate the bulky conventional optics needed for full-Stokes polarisation imaging. We present the modelling of an ultra-thin topology-optimised diffractive metasurface that encodes polarisation states in five different diffraction orders. Positioning the metasurface in a telescope's pupil plane allows the diffraction orders to be imaged onto a single detector, resulting in the capability to perform single-shot full-Stokes polarisation imaging of the Earth's surface. The five rectangular image swaths are designed to use the full width of the camera, and then each successive frame can be stitched together as the satellite moves over the Earth's surface, restoring the full field of view achievable with any chosen camera without comprising the on-ground resolution. Each set of four out of the five orders enables the reconstruction of the full polarisation state, and their simultaneous reconstructions allow for error monitoring. The lightweight design and compact footprint of the polarisation imaging optical system achievable with a metasurface is a novel approach to increase the functionality of small satellites while working within their weight and volume constraints.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metasurface-enabled small-satellite polarisation imaging.\",\"authors\":\"Sarah E Dean, Josephine Munro, Neuton Li, Robert Sharp, Dragomir N Neshev, Andrey A Sukhorukov\",\"doi\":\"10.1039/d5na00298b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observations. The relatively low cost of small-satellites makes their use in remote sensing more accessible. However, their size and weight limitations cannot accommodate the bulky conventional optics needed for full-Stokes polarisation imaging. We present the modelling of an ultra-thin topology-optimised diffractive metasurface that encodes polarisation states in five different diffraction orders. Positioning the metasurface in a telescope's pupil plane allows the diffraction orders to be imaged onto a single detector, resulting in the capability to perform single-shot full-Stokes polarisation imaging of the Earth's surface. The five rectangular image swaths are designed to use the full width of the camera, and then each successive frame can be stitched together as the satellite moves over the Earth's surface, restoring the full field of view achievable with any chosen camera without comprising the on-ground resolution. Each set of four out of the five orders enables the reconstruction of the full polarisation state, and their simultaneous reconstructions allow for error monitoring. The lightweight design and compact footprint of the polarisation imaging optical system achievable with a metasurface is a novel approach to increase the functionality of small satellites while working within their weight and volume constraints.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00298b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00298b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

偏振成像用于区分物体和表面特征,否则黑白或彩色成像是不可见的。Full-Stokes偏振成像允许复杂的图像处理,如水闪烁滤波,这对远程地球观测特别有用。小卫星的成本相对较低,因此更容易将其用于遥感。然而,它们的尺寸和重量限制不能容纳全斯托克斯偏振成像所需的笨重的传统光学器件。我们提出了一个超薄的拓扑优化衍射超表面的建模,编码偏振态在五个不同的衍射顺序。将超表面定位在望远镜的瞳孔平面上,可以将衍射序列成像到单个探测器上,从而能够对地球表面进行单次全斯托克斯偏振成像。五个矩形图像条被设计为使用相机的全宽度,然后当卫星在地球表面上移动时,每个连续的帧可以拼接在一起,恢复任何选择的相机都可以实现的完整视野,而不包括地面分辨率。每一组五阶中的四阶都可以重建完整的极化状态,并且它们的同时重建允许错误监测。超表面偏振成像光学系统的轻量化设计和紧凑的占地面积是增加小型卫星功能的一种新方法,同时在其重量和体积限制下工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metasurface-enabled small-satellite polarisation imaging.

Polarisation imaging is used to distinguish objects and surface characteristics that are otherwise not visible with black-and-white or colour imaging. Full-Stokes polarisation imaging allows complex image processing like water glint filtering, which is particularly useful for remote Earth observations. The relatively low cost of small-satellites makes their use in remote sensing more accessible. However, their size and weight limitations cannot accommodate the bulky conventional optics needed for full-Stokes polarisation imaging. We present the modelling of an ultra-thin topology-optimised diffractive metasurface that encodes polarisation states in five different diffraction orders. Positioning the metasurface in a telescope's pupil plane allows the diffraction orders to be imaged onto a single detector, resulting in the capability to perform single-shot full-Stokes polarisation imaging of the Earth's surface. The five rectangular image swaths are designed to use the full width of the camera, and then each successive frame can be stitched together as the satellite moves over the Earth's surface, restoring the full field of view achievable with any chosen camera without comprising the on-ground resolution. Each set of four out of the five orders enables the reconstruction of the full polarisation state, and their simultaneous reconstructions allow for error monitoring. The lightweight design and compact footprint of the polarisation imaging optical system achievable with a metasurface is a novel approach to increase the functionality of small satellites while working within their weight and volume constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信