Kuang Yee Ng, Noorhafiza Muhammad, Siti Noor Fazliah Mohd Noor, Shayfull Zamree Abd Rahim, Mohd Shuhidan Saleh, Nur Amalina Muhammad, Asnul Hadi Ahmad, Kamalakanta Muduli
{"title":"熔融沉积建模(FDM)打印参数对冠状动脉支架用聚己内酯(PCL)质量的影响","authors":"Kuang Yee Ng, Noorhafiza Muhammad, Siti Noor Fazliah Mohd Noor, Shayfull Zamree Abd Rahim, Mohd Shuhidan Saleh, Nur Amalina Muhammad, Asnul Hadi Ahmad, Kamalakanta Muduli","doi":"10.1177/08853282251334880","DOIUrl":null,"url":null,"abstract":"<p><p>Fused deposition modeling (FDM) is emerging as a promising technique for manufacturing bioresorbable stents (BRS), particularly for coronary artery disease treatment. Polycaprolactone (PCL) has emerged as a favored material due to its biocompatibility, controlled degradation rate and mechanical properties. This review provides a comprehensive analysis of the effects of key FDM printing parameters on the quality aspects of PCL-based BRS, focusing on morphological, mechanical and biological characteristics. This review also highlights inconsistencies in previous studies, particularly in the impact of these parameters on stent dimensions and mechanical properties, emphasizing the need for standardization in experimental methodologies. Additionally, the current gaps in research related to the mechanical and biological performances of PCL-based BRS are discussed, with a call for further studies on long-term effects. This review aims to guide future research by offering insights into optimizing FDM parameters for improving the overall performance and clinical outcomes of PCL-based BRS.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251334880"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of fused deposition modeling (FDM) printing parameters on quality aspects of polycaprolactone (PCL) for coronary stent applications: A review.\",\"authors\":\"Kuang Yee Ng, Noorhafiza Muhammad, Siti Noor Fazliah Mohd Noor, Shayfull Zamree Abd Rahim, Mohd Shuhidan Saleh, Nur Amalina Muhammad, Asnul Hadi Ahmad, Kamalakanta Muduli\",\"doi\":\"10.1177/08853282251334880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fused deposition modeling (FDM) is emerging as a promising technique for manufacturing bioresorbable stents (BRS), particularly for coronary artery disease treatment. Polycaprolactone (PCL) has emerged as a favored material due to its biocompatibility, controlled degradation rate and mechanical properties. This review provides a comprehensive analysis of the effects of key FDM printing parameters on the quality aspects of PCL-based BRS, focusing on morphological, mechanical and biological characteristics. This review also highlights inconsistencies in previous studies, particularly in the impact of these parameters on stent dimensions and mechanical properties, emphasizing the need for standardization in experimental methodologies. Additionally, the current gaps in research related to the mechanical and biological performances of PCL-based BRS are discussed, with a call for further studies on long-term effects. This review aims to guide future research by offering insights into optimizing FDM parameters for improving the overall performance and clinical outcomes of PCL-based BRS.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251334880\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251334880\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251334880","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effects of fused deposition modeling (FDM) printing parameters on quality aspects of polycaprolactone (PCL) for coronary stent applications: A review.
Fused deposition modeling (FDM) is emerging as a promising technique for manufacturing bioresorbable stents (BRS), particularly for coronary artery disease treatment. Polycaprolactone (PCL) has emerged as a favored material due to its biocompatibility, controlled degradation rate and mechanical properties. This review provides a comprehensive analysis of the effects of key FDM printing parameters on the quality aspects of PCL-based BRS, focusing on morphological, mechanical and biological characteristics. This review also highlights inconsistencies in previous studies, particularly in the impact of these parameters on stent dimensions and mechanical properties, emphasizing the need for standardization in experimental methodologies. Additionally, the current gaps in research related to the mechanical and biological performances of PCL-based BRS are discussed, with a call for further studies on long-term effects. This review aims to guide future research by offering insights into optimizing FDM parameters for improving the overall performance and clinical outcomes of PCL-based BRS.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.