{"title":"通过单细胞RNA-Seq数据预测和解释药物反应的迁移学习框架。","authors":"Yujie He, Shenghao Li, Hao Lan, Wulin Long, Shengqiu Zhai, Menglong Li, Zhining Wen","doi":"10.3390/ijms26094365","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy is a fundamental therapy in cancer treatment, yet its effectiveness is often undermined by drug resistance. Understanding the molecular mechanisms underlying drug response remains a major challenge due to tumor heterogeneity, complex cellular interactions, and limited access to clinical samples, which also hinder the performance and interpretability of existing predictive models. Meanwhile, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering resistance mechanisms, but the systematic collection and utilization of scRNA-seq drug response data remain limited. In this study, we collected scRNA-seq drug response datasets from publicly available web sources and proposed a transfer learning-based framework to align bulk and single cell sequencing data. A shared encoder was designed to project both bulk and single-cell sequencing data into a unified latent space for drug response prediction, while a sparse decoder guided by prior biological knowledge enhanced interpretability by mapping latent features to predefined pathways. The proposed model achieved superior performance across five curated scRNA-seq datasets and yielded biologically meaningful insights through integrated gradient analysis. This work demonstrates the potential of deep learning to advance drug response prediction and underscores the value of scRNA-seq data in supporting related research.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 9","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072357/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Transfer Learning Framework for Predicting and Interpreting Drug Responses via Single-Cell RNA-Seq Data.\",\"authors\":\"Yujie He, Shenghao Li, Hao Lan, Wulin Long, Shengqiu Zhai, Menglong Li, Zhining Wen\",\"doi\":\"10.3390/ijms26094365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy is a fundamental therapy in cancer treatment, yet its effectiveness is often undermined by drug resistance. Understanding the molecular mechanisms underlying drug response remains a major challenge due to tumor heterogeneity, complex cellular interactions, and limited access to clinical samples, which also hinder the performance and interpretability of existing predictive models. Meanwhile, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering resistance mechanisms, but the systematic collection and utilization of scRNA-seq drug response data remain limited. In this study, we collected scRNA-seq drug response datasets from publicly available web sources and proposed a transfer learning-based framework to align bulk and single cell sequencing data. A shared encoder was designed to project both bulk and single-cell sequencing data into a unified latent space for drug response prediction, while a sparse decoder guided by prior biological knowledge enhanced interpretability by mapping latent features to predefined pathways. The proposed model achieved superior performance across five curated scRNA-seq datasets and yielded biologically meaningful insights through integrated gradient analysis. This work demonstrates the potential of deep learning to advance drug response prediction and underscores the value of scRNA-seq data in supporting related research.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26094365\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26094365","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Transfer Learning Framework for Predicting and Interpreting Drug Responses via Single-Cell RNA-Seq Data.
Chemotherapy is a fundamental therapy in cancer treatment, yet its effectiveness is often undermined by drug resistance. Understanding the molecular mechanisms underlying drug response remains a major challenge due to tumor heterogeneity, complex cellular interactions, and limited access to clinical samples, which also hinder the performance and interpretability of existing predictive models. Meanwhile, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering resistance mechanisms, but the systematic collection and utilization of scRNA-seq drug response data remain limited. In this study, we collected scRNA-seq drug response datasets from publicly available web sources and proposed a transfer learning-based framework to align bulk and single cell sequencing data. A shared encoder was designed to project both bulk and single-cell sequencing data into a unified latent space for drug response prediction, while a sparse decoder guided by prior biological knowledge enhanced interpretability by mapping latent features to predefined pathways. The proposed model achieved superior performance across five curated scRNA-seq datasets and yielded biologically meaningful insights through integrated gradient analysis. This work demonstrates the potential of deep learning to advance drug response prediction and underscores the value of scRNA-seq data in supporting related research.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).